Presented at IDWeek 2016 October 26-30, 2016 New Orleans, LA, USA

Activity of Ceftolozane/Tazobactam and Comparators Tested Against Carbapenem-Nonsusceptible Pseudomonas aeruginosa Isolates

INTRODUCTION

- Ceftolozane, a novel oxyimino-aminothiazolyl cephalosporin, exerts potent activity against Enterobacteriaceae (similar to other oxyimino-aminothiazolyl cephalosporins) and has demonstrated greater activity than ceftazidime against *Pseudomonas aeruginosa*
- Ceftolozane maintains its stability against many *P. aeruginosa* resistance mechanisms, including AmpC hyperproduction and efflux mechanisms, and is little affected by porin deficiency
- However, as with other oxyimino-aminothiazolyl cephalosporins, ceftolozane's activity is compromised in bacteria producing extended-spectrum β-lactamases (ESBLs), stably derepressed AmpC β-lactamases, and carbapenemases
- Tazobactam, a penicillanic acid sulfone, is a well-established β-lactamase inhibitor that extends the spectrum of β-lactam agents
- Ceftolozane/tazobactam is a novel antibacterial combination with activity against P. aeruginosa (including drug-resistant strains) and against other common Gram-negative pathogens, among them many ESBL-producing Enterobacteriaceae
- Although carbapenems are some of the most effective agents for treating Gram-negative infections (including those caused by *P. aeruginosa*), carbapenem resistance in *P. aeruginosa* limits the available treatment options; these pathogens are commonly resistant to other β -lactam agents as well
- Empiric and targeted therapies to treat infections with these organisms are becoming increasingly limited • In the present study, we compared the activity of ceftolozane/tazobactam on *P. aeruginosa* isolates nonsusceptible to ≥1 carbapenem (doripenem, imipenem, meropenem) between 2012 and 2015 from both the United States
- and Europe

MATERIALS AND METHODS

Sampling sites and organisms

- *P. aeruginosa* isolates were consecutively collected by the Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS) between 2012 and 2015 from 74 medical centers throughout Europe and from all 9 US census divisions
- *P. aeruginosa* isolates were selected if they were nonsusceptible to ≥1 carbapenem (doripenem, imipenem, meropenem) according to Clinical and Laboratory Standards Institute (CLSI) 2016 breakpoints
- The isolates were collected from patients in 17 European countries (including Turkey and Israel) and the United States (21 states)
- All organisms were isolated from documented infections, and only 1 isolate per patient infection episode was included in the surveillance collection
- The distribution of infection type for the carbapenem-nonsusceptible P. aeruginosa isolates is shown in **Figure 1**. Most (53%) isolates were from hospital patients with pneumonia

Antimicrobial susceptibility testing

- Minimum inhibitory concentration (MIC) values were determined using the reference CLSI broth microdilution method (M07-A10)
- Quality control (QC) ranges and interpretive criteria for comparator compounds used the CLSI M100-S26 guidelines
- QC strains included Escherichia coli ATCC 25922 and NCTC 13353, Klebsiella pneumoniae ATCC 700603, and *P. aeruginosa* ATCC 27853
- All QC results were within published ranges

RESULTS

- Among 8423 P. aeruginosa isolates, 2507 (29.8%) were nonsusceptible using the CLSI criteria of ≥1 μg/mL for the carbapenems meropenem, imipenem, and doripenem
- Carbapenem-nonsusceptible P. aeruginosa displayed low susceptibility rates for various agents tested (Table 1) - Colistin (MIC_{50/90}, 1/2 µg/mL; 98.8/99.7% susceptible per CLSI/EUCAST criteria) was the most active agent, followed by ceftolozane/tazobactam and amikacin

Urinary tract Bloodstream Skin/soft tissue Intra-abdo infection infection 6% Other sites 20% 53% Pneumonia in hospital patients

Figure 1. Infection type for 2507 carbapenem-

nonsusceptible *P. aeruginosa* isolates (2012-2015).

Table 1. Activity of ceftolozane/tazobactam and comparators versus carbapenem-nonsusceptible P. aeruginosa

Antimic

Ceftoloz

Amikaci

Cefepin

Ceftazio Colistin

Merope

Levoflox

Piperac

CLSI = Clinical and Laboratory Standards Institute; EUCAST = European Committee on Antimicrobial Susceptibility Testing; MIC₅₀ = minimum inhibitory concentration to inhibit growth of 50% of isolates; MIC_{90} = minimum inhibitory concentration to inhibit growth of 90% of isolates; S = susceptible.

Table 2. Activity of ceftolozane/tazobactam and comparators tested against carbapenem-nonsusceptible *P. aeruginosa* isolates from the United States (PACTS, 2012-2015)

New Er Mid-Atla East No _____ West No _____ South A

- East So West Se Mountai ່ Pacific (ອວ,

 Ceftolozane/tazobactam (MIC_{50/90}, 1/>32 μg/mL) inhibited 77.9% of the carbapenem-nonsusceptible isolates at current susceptible CLSI/EUCAST breakpoints

– Amikacin was active against 78.8% of the isolates using the CLSI interpretive criteria and 68.4% of the isolates applying EUCAST breakpoints

- Cefepime, ceftazidime, and piperacillin/tazobactam were active against 52.5%, 50.3%, and 42.0% of the isolates, respectively, using CLSI or EUCAST breakpoints

	All N = 2507				United States n = 894				Europe n = 1613			
Antimicrobial Agent	MIC ₅₀	MIC ₉₀	%S CLSI	%S EUCAST	MIC ₅₀	MIC ₉₀	%S CLSI	%S EUCAST	MIC ₅₀	MIC ₉₀	%S CLSI	%S EUCAST
Ceftolozane/tazobactam	1	>32	77.9	77.9	1	4	90.0	90.0	2	>32	71.2	71.2
Amikacin	4	>32	78.8	68.4	4	16	91.7	82.3	8	>32	71.7	60.8
Cefepime	8	>16	52.5	52.5	8	>16	60.4	60.4	16	>16	48.2	48.2
Ceftazidime	8	>32	50.3	50.3	8	>32	61.6	61.6	16	>32	44.0	44.0
Colistin	1	2	98.8	99.7	1	2	98.8	99.7	1	2	98.9	99.7
Jeropenem	8	>8	18.8	18.8	8	>8	21.7	21.7	8	>8	17.2	17.2
evofloxacin	>4	>4	37.0	26.1	4	>4	39.0	27.3	>4	>4	35.8	25.4
Piperacillin/tazobactam	32	>64	42.0	42.0	16	>64	51.5	51.5	32	>64	36.7	36.7

• Ceftolozane/tazobactam inhibited 90% of the carbapenem-nonsusceptible *P. aeruginosa* from the United States and 71.2% of the isolates from Europe at current susceptible CLSI/EUCAST breakpoints

- For carbapenem-nonsusceptible *P. aeruginosa* in this study, ceftolozane/tazobactam inhibited 70% (1271/1815), 77% (1804/2343), and 73% (1490/2035) of the doripenem-, imipenem-, and meropenem-nonsusceptible isolates, respectively

• Overall, except for colistin, isolates from Europe displayed lower susceptibility rates for comparator agents than isolates from the United States (**Table 1**)

• Tables 2 and 3 show the activity of ceftolozane/tazobactam and comparator agents versus carbapenem-nonsusceptible *P. aeruginosa* isolates from the United States and Europe, respectively

• Figure 2 shows the ceftolozane/tazobactam susceptibility rates for carbapenem-nonsusceptible P. aeruginosa from the 9 US census divisions. Differences in activity between them range from 78.5% susceptible in the Pacific division to 98.6% susceptible in the West North Central division

• Figure 3 shows the ceftolozane/tazobactam susceptibility rates for carbapenem-nonsusceptible *P. aeruginosa* from the 17 participating European countries (including Turkey and Israel). Differences in activity between the countries range from 0.0% susceptible in Belarus to 97.9% susceptible in Ireland

				•							
	MIC _{50/90} , μg/mL										
(no. isolates)	Ceftolozane/ tazobactam	Amikacin	Cefepime	Ceftazidime	Colistin	Levofloxacin	Meropenem	Piperacillin/ tazobactam			
ngland (102)	1/4	4/16	8/>16	4/>32	1/2	>4/>4	4/>8	8/>64			
antic (138)	1/8	4/16	8/>16	8/>32	1/2	4/>4	8/>8	32/>64			
orth Central (127)	1/4	4/8	8/>16	8/>32	1/2	4/>4	8/>8	16/>64			
orth Central (72)	1/4	4/8	8/>16	4/>32	1/2	>4/>4	4/>8	16/>64			
tlantic (128)	1/8	4/32	8/>16	4/>32	1/2	4/>4	8/>8	16/>64			
outh Central (76)	1/4	4/16	8/>16	4/32	1/2	>4/>4	8/>8	16/>64			
outh Central (111)	1/4	4/32	8/>16	8/>32	1/2	>4/>4	8/>8	32/>64			
in (47)	1/2	4/8	8/16	4/>32	1/2	4/>4	8/>8	16/>64			
(93)	1/16	8/>32	8/>16	8/>32	1/2	>4/>4	8/>8	32/>64			

MIC₅₀ = minimum inhibitory concentration to inhibit growth of 50% of isolates; MIC₉₀ = minimum inhibitory concentration to inhibit growth of 90% of isolates; PACTS = Program to Assess Ceftolozane/Tazobactam Susceptibility.

Table 3. Activity of ceftolozane/tazobactam and comparators tested against carbapenem-nonsusceptible P. aeruginosa isolates from Europe (PACTS, 2012-2015)

Countr Belarus _____ Belgiun Czech _____ France Germar Greece _____ Ireland Israel (7 Italy (1 _____ Poland Portuga _____ Russia Spain Sweder

Turkey

Ukraine United

Shortridge D; Castanheira M; Duncan LR; Sader HS; Flamm RK JMI Laboratories, North Liberty, Iowa, USA

	MIC _{50/90} , μg/mL										
(no. isolates)	Ceftolozane/ tazobactam	Amikacin	Cefepime	Ceftazidime	Colistin	Levofloxacin	Meropenem	Piperacillin/ tazobactam			
(30)	>32/>32	>32/>32	>16/>16	32/>32	≤0.5/1	>4/>4	>32/>32†	64/>64			
า (63)	2/>32	8/>32	16/>16	16/>32	1/2	>4/>4	>8/>8	32/>64			
Republic (25)	1/>32	4/>32	8/>16	16/>32	1/2	>4/>4	8/>8	32/>64			
(119)	1/4	4/32	8/>16	8/>32	2/2	4/>4	4/8	32/>64			
יy (144)	1/8	4/>32	8/>16	8/>32	1/2	4/>4	8/>8	32/>64			
(51)	8/>32	8/>32	16/>16	16/>32	2/2	>4/>4	>8/>8	32/>64			
(48)	1/4	4/32	8/16	4/>32	1/2	2/>4	4/>8	16/>64			
71)	1/4	4/16	8/>16	8/>32	1/2	4/>4	4/>8	16/>64			
18)	2/>32	8/>32	16/>16	16/>32	1/2	>4/>4	8/>8	32/>64			
(202)	2/>32	16/>32	16/>16	16/>32	1/2	>4/>4	8/>8	64/>64			
al (111)	16/32	16/16	16/>16	>32/>32	1/2	>4/>4	>8/>8	>64/>64			
(179)	8/>32	>32/>32	16/>16	32/>32	1/2	>4/>4	>8/>8	32/>64			
144)	2/16	4/16	8/>16	16/>32	1/2	>4/>4	8/>8	64/>64			
า (29)	1/4	4/8	8/16	4/>32	1/2	1/>4	4/>8	16/>64			
(177)	1/16	4/32	8/>16	8/>32	1/2	2/>4	8/>8	32/>64			
e (28)	32/>32	>32/>32	16/>16	32/>32	1/2	>4/>4	>8/>8	64/>64			
Kinadom (44)	1/2	2/4	4/16	4/32	1/2	1/>4	8/>8	16/64			

 MIC_{50} = minimum inhibitory concentration to inhibit growth of 50% of isolates; MIC_{90} = minimum inhibitory concentration to inhibit growth of 90% of isolates; PACTS = Program to Assess Ceftolozane/Tazobactam Susceptibility.

[†]Test range for meropenem changed in 2015.

Figure 2. Comparison of ceftolozane/tazobactam susceptibility rates[†] for carbapenem-nonsusceptible P. aeruginosa in US census divisions (2012-2015).

CLSI = Clinical and Laboratory Standards Institute; EUCAST = European Committee on Antimicrobial Susceptibility Testing; S = susceptibility. Green coloration denotes susceptibility rates: the darker the color, the greater the susceptibility of *P. aeruginosa* to ceftolozane/tazobactam in that division. [†]Based on 2016 CLSI/EUCAST.

Funding for this research was provided by Merck & Co., Inc., Kenilworth, NJ, USA. Editorial assistance was provided by Sally Mitchell, PhD (ApotheCom, Yardley, PA, USA). This assistance was funded by Merck & Co., Inc., Kenilworth, NJ, USA.

Dee Shortridge, PhD JMI Laboratories 345 Beaver Kreek Centre, Ste A North Liberty, IA 52317, USA 319-665-3370 dee-shortridge@jmilabs.com

CLSI = Clinical and Laboratory Standards Institute; EUCAST = European Committee on Antimicrobial Susceptibility Testing; S = susceptibility. Green coloration denotes susceptibility rates: the darker the color, the greater the susceptibility of P. aeruginosa to ceftolozane/tazobactam in that country. [†]Based on 2016 CLSI/EUCAST.

CONCLUSIONS

• P. aeruginosa is a leading cause of nosocomial infections. High mortality rates and increasing levels of carbapenem resistance have been observed worldwide

• Ceftolozane/tazobactam retained activity against 77.9% of the carbapenem-nonsusceptible *P. aeruginosa* overall (US and Europe) and 90% of the isolates from the United States

• Ceftolozane/tazobactam was active against >70% of the carbapenem-nonsusceptible *P. aeruginosa* from Europe (including Turkey and Israel), where metallo-β-lactamase-producing isolates are more commonly described. However, there was a broad range of susceptibility within Europe (including Turkey and Israel)

• Ceftolozane/tazobactam may represent a valuable treatment option for Gram-negative infections, including those caused by carbapenem-nonsusceptible P. aeruginosa

REFERENCES

Clinical and Laboratory Standards Institute. M07-A10. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard tenth edition. Wavne, PA: CLSI: 2015.

Clinical and Laboratory Standards Institute. M100-S26. Performance standards for antimicrobial susceptibility testing: 26th informational supplement. Wayne, PA: CLSI; 2016. Craig WA, Andes DR. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum beta-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1577-1582.

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. http://www.eucast.org/clinical breakpoints/. Accessed September 13, 2016.

Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011-2012). Antimicrob Agents Chemother. 2013;57:6305-6310.

Sader HS, Farrell DJ, Castanheira M, Flamm RK, Jones RN. Antimicrobial activity of ceftolozane/tazobactam tested against Pseudomonas aeruginosa and Enterobacteriaceae with various resistance patterns isolated in European hospitals (2011-12). J Antimicrob Chemother. 2014;69:2713-2722.

Skalweit MJ. Profile of ceftolozane/tazobactam and its potential in the treatment of complicated intra-abdominal infections. Drug Des Devel Ther. 2015;9:2919-2925.

ACKNOWLEDGMENTS

