IDWEEK 2020 | Poster number 1595

Ceftobiprole Activity against Gram-Positive Pathogens Causing Bone and Joint Infections in the United States from 2016 through 2019

Leonard R. Duncan¹, Kamal A. Hamed², Jennifer I. Smart², Michael A. Pfaller^{1,3}, Robert K. Flamm¹, Rodrigo E. Mendes¹

¹JMI Laboratories, North Liberty, Iowa, USA; ²Basilea Pharmaceutica International, Ltd., Basel, Switzerland; ³University of Iowa, Iowa City, Iowa, USA

Introduction

- Bone and joint infections (BJIs) cause serious morbidity and mortality and present significant treatment challenges (Colston and Atkins [2018]).
- Ceftobiprole medocaril is a parenteral, advanced-generation cephalosporin prodrug that is approved in many European and non-European countries for the treatment of adults with community- and hospital-acquired pneumonia, excluding ventilator-associated pneumonia.
- Ceftobiprole was designed to inhibit penicillin-binding protein 2A (encoded by mecA), which confers methicillin (oxacillin) resistance in Staphylococcus
- Ceftobiprole exhibits potent in vitro antimicrobial activity against many important Gram-positive pathogens like S. aureus (including methicillinresistant [MRSA] isolates) and Streptococcus pneumoniae.
- Ceftobiprole also exhibits antimicrobial activity against Enterobacteriaceae and Pseudomonas aeruginosa isolates that is similar to other cephalosporins like cefepime.
- Ceftobiprole is not approved in the United States (USA) but has a qualified infectious disease product designation for the potential treatment of acute bacterial skin and skin structure infections (ABSSSIs), S. aureus bacteremia, and community-acquired pneumonia.
- Ceftobiprole is being evaluated in two phase 3 clinical trials for patients
- ABSSSIs (completed in 2019)
- S. aureus bacteremia, including infective endocarditis (expected completion in 2022).
- In this study, the in vitro activity of ceftobiprole and comparators was evaluated against recent Gram-positive clinical isolates collected from BJIs in the USA.

Materials and Methods

Bacterial Isolates

- 306 Gram-positive pathogens were collected from patients with BJIs at 27 US medical centers between 2016 and 2019.
- Bacterial species were identified by the submitting laboratories and confirmed by JMI Laboratories using standard microbiology methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).
- The major Gram-positive BJI species and pathogen groups, which included S. aureus, coagulase-negative staphylococci (CoNS), Enterococcus faecalis, and β-hemolytic streptococci (BHS), are shown in Figure 1.

Susceptibility Testing

- Susceptibility to ceftobiprole and comparator agents was tested using current Clinical and Laboratory Standards Institute (CLSI) methods (M07, 2018; M100, 2020).
- CLSI and European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretive criteria were applied according to current guidelines.
- For S. aureus, the EUCAST susceptibility breakpoint for ceftobiprole is
- The susceptibilities of pathogen groups without specific published interpretive criteria for ceftobiprole were evaluated using the EUCAST pharmacokinetic-pharmacodynamic (PK-PD) non-species-related breakpoint of 4 mg/L (EUCAST, 2020); further studies are required to evaluate the full clinical utility of ceftobiprole against such organisms.
- US Food and Drug Administration criteria were used as an alternative breakpoint source for tigecycline.

- JMI Laboratories followed current CLSI quality assurance practices when performing the susceptibility tests.
- MIC values were validated by concurrently testing CLSI-recommended (M100, 2020) ATCC quality control (QC) reference strains.
- QC ranges for tested reference strains were those criteria approved or published by CLSI (M100, 2020).
- The inoculum density during susceptibility testing was monitored by bacterial colony counts.

Results

- The major Gram-positive species and pathogen groups from BJIs included S. aureus (67%), β-hemolytic streptococci (BHS; 14%), coagulase-negative staphylococci (CoNS; 9%), and *E. faecali*s (7%) (Figure 1).
- Ceftobiprole was highly active against the full BJI S. aureus isolate set (MIC_{50/90} values, 0.5/1 mg/L; 100.0% susceptible by EUCAST criteria) (Table 1).
 - Ceftobiprole activity was nearly identical to the corresponding activity reported for all US 2016 S. aureus isolates from multiple infection sources (MIC_{50/90} values, 0.5/2 mg/L; 99.7% susceptible by EUCAST criteria; Pfaller et al. [2018]).
 - Against the methicillin-resistant S. aureus subset (MRSA; 35.1% of all S. aureus), the $MIC_{50/90}$ values increased by only 2-fold (Table 1 and Table 3; $MIC_{50/90}$ values, 1/2 mg/L; 100% susceptible).
- All MRSA isolates were also susceptible to daptomycin, linezolid, tigecycline, and vancomycin (Table 3). Corresponding MIC data for methicillin-susceptible S. aureus isolates are displayed in Table 2.
- 97.2% of the MRSA isolates were susceptible to ceftaroline (Table 3). Ceftobiprole also exhibited potent activity against other Gram-positive
- cocci, including (Table 1): - BHS (MIC_{50/90} values, 0.015/0.03 mg/L; 100% inhibited at ≤ 4 mg/L, which is the EUCAST PK-PD non-species-related breakpoint).
- CoNS (MIC_{50/90} values, 1/4 mg/L; 100% inhibited at ≤ 4 mg/L).
- E. faecalis (MIC_{50/90} values, 0.5/2 mg/L; 100.0% inhibited at ≤ 4 mg/L).
- Ceftaroline (MIC_{50/90}, 2/8 mg/L) was 4-fold less potent than ceftobiprole (MIC $_{50/90}$, 0.5/2 mg/L) against the *E. faecali*s subset (data not shown).

Conclusions

- Ceftobiprole was highly active against clinical BJI isolates from the major Gram-positive pathogen groups collected at US medical centers during
- S. aureus comprised the majority (67%) of the Gram-positive BJI
- The S. aureus BJI isolate set, including MRSA, was 100.0% susceptible to ceftobiprole.
- Ceftobiprole activity against the BJI isolate set was nearly identical to previously reported activity against combined US isolates obtained from various infection types (Pfaller et al. [2018]).
- The remaining Gram-positive isolate sets (BHS, E. faecalis, and CoNS) also were 100% susceptible to ceftobiprole using the EUCAST PK-PD non-species-related breakpoint.
- The potent antibacterial activity of ceftobiprole, including against MRSA, supports its further evaluation for the potential treatment of BJIs caused by Gram-positive pathogens.

Table 1 Cumulative distributions of MIC values for ceftobiprole against the main Gram-positive species and groups from bone and joint infections

Organism (organism group (no. of isolatos)	No. and cumulative % of isolates inhibited at MIC (mg/L) of:											MIC	MIC		
Organism/organism group (no. of isolates)	≤0.002	0.004	0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	> a	MIC ₅₀	MIC ₉₀
Staphylococcus aureus (205)					0 0.0	1 0.5	0 0.5	35 17.6	100 66.3	54 92.7	15 100.0			0.5	1
Methicillin-susceptible (133)					0 0.0	1 0.8	0 0.8	35 27.1	96 99.2	1 100.0				0.5	0.5
Methicillin-resistant (72)								0.0	4 5.6	53 79.2	15 100.0			1	2
Coagulase-negative staphylococci (29) b						0.0	3 10.3	1 13.8	8 41.4	14 89.7	0 89.7	3 100.0		1	4
Methicillin-susceptible (6)						0.0	1 16.7	1 33.3	2 66.7	2 100.0				0.5	
Methicillin-resistant (23)						0.0	2 8.7	0 8.7	6 34.8	12 87.0	0 87 . 0	3 100.0		1	4
Enterococcus faecalis (21)						0.0	1 4.8	4 23.8	10 71.4	2 81.0	2 90 . 5	2 100.0		0.5	2
β-hemolytic streptococci (42)	0.0	2 4.8	8 23 . 8	11 50.0	20 97 . 6	100.0								0.015	0.03
Streptococcus agalactiae (24)			0.0	3 12.5	20 95 . 8	1 100.0								0.03	0.03
Streptococcus dysgalactiae (7)	0.0	1 14.3	0 14.3	6 100.0										0.015	
Streptococcus pyogenes (11)	0.0	1 9.1	8 81.8	2 100.0										0.008	0.015

b Species included Staphylococcus epidermidis (17), Staphylococcus haemolyticus (4), Staphylococcus hominis (2), Staphylococcus lugdunensis (4), and Staphylococcus simulans (2).

Table 2 Activity of ceftobiprole and comparator agents when tested against 133 methicillin-susceptible Staphylococcus aureus isolates from bone and joint infections

Antimicrobial agent		mg/L			CLSIa		EUCAST ^a			
	MIC ₅₀	MIC ₉₀	MIC range	% S	%	%R	% S	% I	%R	
Ceftobiprole	0.5	0.5	0.06 to 1				100.0		0.0	
Ceftaroline	0.25	0.25	≤0.06 to 0.5	100.0 b	0.0	0.0	100.0 ^c 100.0 ^d	0.0	0.0	
Ceftriaxone	4	8	≤0.25 to 8	100.0		0.0				
Clindamycin	≤0.25	≤0.25	≤0.25 to >2	96.2	0.0	3.8	95.5	0.8	3.8	
Daptomycin	0.25	0.5	≤0.12 to 0.5	100.0			100.0		0.0	
Erythromycin	0.25	>8	≤0.06 to >8	71.4	9.8	18.8	72.2	3.8	24.1	
Gentamicin	≤1	≤1	≤1 to >8	99.2	0.0	0.8	99.2 ^e		0.8	
Levofloxacin	0.25	0.5	0.06 to >4	93.2	0.0	6.8	f	93.2	6.8	
Linezolid	1	2	≤0.12 to 2	100.0		0.0	100.0		0.0	
Oxacillin	0.5	1	≤0.25 to 2	100.0		0.0	100.0		0.0	
Tetracycline	≤0.5	≤0.5	≤0.5 to >8	95.5	0.8	3.8	94.7	0.8	4.5	
Tigecycline	0.12	0.12	0.03 to 0.25	100.0 g			100.0		0.0	
Trimethoprim-sulfamethoxazole	≤0.5	≤0.5	≤0.5 to 2	100.0		0.0	100.0	0.0	0.0	
Vancomycin	1	1	0.5 to 2	100.0	0.0	0.0	100.0		0.0	
Criteria as published by CLSI (2020) and EUCAST (2020).										

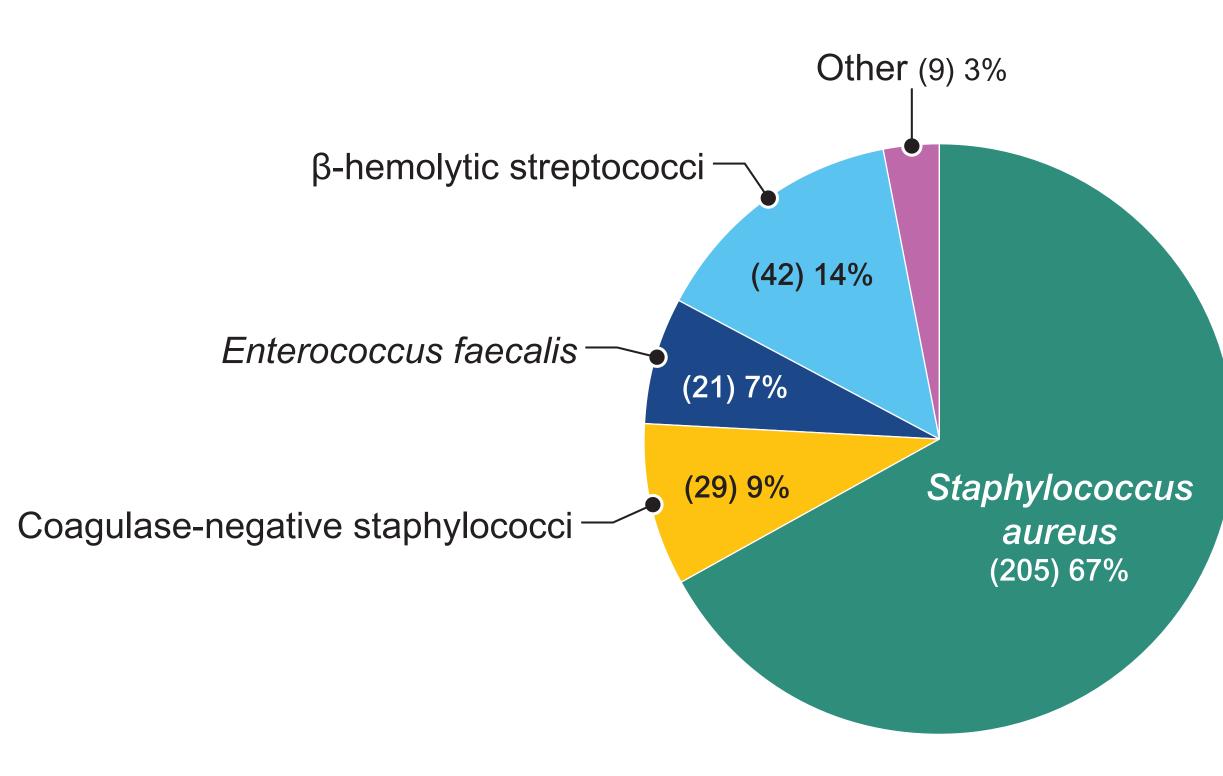

Intermediate interpreted as susceptible-dose dependent

Table 3 Activity of ceftobiprole and comparator agents when tested against 72 methicillin-resistant Staphylococcus aureus isolates from bone and joint infections

Antimic robiol ocont		mg/L			CLSIa		EUCAST ^a			
Antimicrobial agent	MIC ₅₀	MIC ₉₀	MIC range	% S	%	%R	% S	%	%R	
Ceftobiprole	1	2	0.5 to 2				100.0		0.0	
Ceftaroline	0.5	1	0.25 to 2	97.2 b	2.8	0.0	97.2 ^c 97.2 ^d	2.8	0.0 2.8	
Ceftriaxone	>8	>8	>8 to >8	0.0		100.0				
Clindamycin	≤0.25	>2	≤0.25 to >2	73.6	0.0	26.4	73.6	0.0	26.4	
Daptomycin	0.25	0.5	≤0.12 to 0.5	100.0			100.0		0.0	
Erythromycin	>8	>8	0.12 to >8	13.9	0.0	86.1	13.9	0.0	86.1	
Gentamicin	≤1	≤1	≤1 to >8	97.2	0.0	2.8	97.2 ^e		2.8	
Levofloxacin	4	>4	0.06 to >4	27.8	2.8	69.4	f	27.8	72.2	
Linezolid	1	2	0.5 to 4	100.0		0.0	100.0		0.0	
Oxacillin	>2	>2	>2 to >2	0.0		100.0	0.0		100.0	
Tetracycline	≤0.5	8	≤0.5 to >8	88.9	4.2	6.9	88.9	0.0	11.1	
Tigecycline	0.06	0.12	0.03 to 0.25	100.0 g			100.0		0.0	
Trimethoprim-sulfamethoxazole	≤0.5	≤0.5	≤0.5 to >4	91.7		8.3	91.7	0.0	8.3	
Vancomycin	1	1	0.5 to 2	100.0	0.0	0.0	100.0		0.0	

^a Criteria as published by CLSI (2020) and EUCAST (2020).

Figure 1 Gram-positive species and groups (number of isolates) isolated from bone and joint infections

The "other" group included Enterococcus avium (1), Enterococcus faecium (2), Streptococcus mitis/oralis (3), and Streptococcus pneumoniae (3).

Acknowledgements

This project has been funded in whole or in part with federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority, under Contract No. HHSO100201600002C.

References

Clinical and Laboratory Standards Institute (2018). M07Ed11. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: 11th edition. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2020). M100Ed30. Performance standards for antimicrobial susceptibility testing: 30th edition. Wayne, PA: CLSI. Colston J and Atkins B. (2018) Bone and joint infection. Clin Med (Lond) 18(2):150-154.

EUCAST (2020). Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, January 2020. Available at https://www.eucast .org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0 _Breakpoint_Tables.pdf. Accessed January 2020.

Pfaller MA, Flamm RK, Mendes RE, et al. (2018). Ceftobiprole activity against Gram-positive and -negative pathogens collected from the United States in 2006 and 2016. Antimicrob Agents Chemother 63: e01566.

Contact

Leonard Duncan, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: leonard-duncan@jmilabs.com

Using other than pneumonia breakpoints.

e For systemic infections, aminoglycosides must be used in combination with other active therapy.

f An arbitrary susceptible breakpoint of ≤0.001 mg/L has been published by EUCAST indicating that susceptible should not be reported for this organism-agent combination and intermediate should be interpreted as susceptible increased exposure (EUCAST 2020).

g FDA breakpoints published 2017-DEC-13.

Intermediate interpreted as susceptible-dose dependent ^c Using other than pneumonia breakpoints. ^d Using pneumonia breakpoints.

^e For systemic infections, aminoglycosides must be used in combination with other active therapy.

f An arbitrary susceptible breakpoint of ≤ 0.001 mg/L has been published by EUCAST indicating that susceptible should not be reported for this organism-agent combination and intermediate should be interpreted as susceptible increased exposure (EUCAST 2020).