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ABSTRACT The in vitro activities of gepotidacin and comparator agents against 3,560
Escherichia coli and 344 Staphylococcus saprophyticus collected from female (81.1%) and
male (18.9%) patients with urinary tract infections (UTIs) in a global prospective surveillance
program in 2019 to 2020 were determined. Isolates collected from 92 medical centers in
25 countries, including the United States, Europe, Latin America, and Japan, were tested for
susceptibility by reference methods in a central monitoring laboratory. Gepotidacin inhib-
ited 98.0% (3,488/3,560 isolates) of E. coli and 100% (344/344 isolates) of S. saprophyticus at
gepotidacin concentrations of #4 mg/mL and #0.25 mg/mL, respectively. This activity was
largely unaffected with isolates that demonstrated resistance phenotypes to other oral
standard-of-care antibiotics, including amoxicillin-clavulanic acid, cephalosporins, fluoroqui-
nolones, fosfomycin, nitrofurantoin, and trimethoprim-sulfamethoxazole. Gepotidacin also
inhibited 94.3% (581/616 isolates) of E. coli isolates with an extended-spectrum b-lacta-
mase-producing phenotype, 97.2% (1,085/1,129 isolates) of E. coli isolates resistant to cipro-
floxacin, 96.1% (874/899) of E. coli isolates resistant to trimethoprim-sulfamethoxazole, and
96.3% (235/244 isolates) of multidrug-resistant E. coli isolates at gepotidacin concentrations
of #4 mg/mL. In summary, gepotidacin demonstrated potent activity against a large collec-
tion of contemporary UTI E. coli and S. saprophyticus strains collected from patients world-
wide. These data support the further clinical development of gepotidacin as a potential
treatment option for patients with uncomplicated UTIs.
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E scherichia coli is the most common pathogen causing urinary tract infections (UTIs)
(1–3). Historically, these infections have been treated with oral antibiotics, includ-

ing trimethoprim-sulfamethoxazole, cephalosporins, and fluoroquinolones. However,
the prevalence of isolates resistant to fluoroquinolones or trimethoprim-sulfamethoxazole
has increased, as has the number of isolates displaying extended-spectrum b-lactamase
(ESBL)-producing phenotypes. This scenario has precluded the use of many of the afore-
mentioned oral agents for the empirical and guided treatment of UTIs (4). This increase
in ESBL-producing isolates is due in part to the rapid clonal expansion of sequence type
131 (ST131) E. coli isolates, especially in the nosocomial setting (5). ESBL-producing E. coli
strains, including ST131 isolates, are often coresistant to other agents used to treat UTIs,
such as fluoroquinolones, leading to the recommendation of older antibiotics for the
treatment of UTIs (6). Current first-line treatment options include amoxicillin, amoxicillin-
clavulanate, fosfomycin, nitrofurantoin, the amdinocillin prodrug pivmecillinam, and trime-
thoprim-sulfamethoxazole.

Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial
that inhibits DNA gyrase and topoisomerase IV by a distinct mechanism of action, which
confers activity against most strains of target pathogens, such as E. coli, Staphylococcus sap-
rophyticus, and Neisseria gonorrhoeae, including those that are resistant to current antibiotics
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(7, 8). Gepotidacin represents a future option for oral treatment of uncomplicated UTIs
(uUTIs), defined as UTIs among premenopausal, nonpregnant women with no known
urological abnormalities or comorbidities (6). Gepotidacin possesses oral bioavailability
(9) and has completed to phase 3 clinical studies (ClinicalTrials.gov registration numbers
NCT04020341, NCT04187144, and NCT04010539) for the treatment of uUTIs and urogenital
gonorrhea (10–14). In addition, pharmacokinetic (PK)/pharmacodynamic (PD) studies and
potential effects of gepotidacin on the gut microbiome have been reported (15–17).

Prior studies of gepotidacin established in vitro activity for the most common UTI target
pathogens (18–21); however, this study prospectively monitored the in vitro activity of gepo-
tidacin and comparator agents against a contemporary collection of E. coli and S. saprophyti-
cus strains recovered from UTIs. The in vitro activity of gepotidacin against these isolates, as
well as against subsets displaying resistance to other agents, is discussed.

RESULTS

The gepotidacin MIC50 and MIC90 values were both 2mg/mL against 3,560 E. coli isolates,
with 98.0% of the isolates being inhibited at gepotidacin concentrations of #4 mg/mL
(Table 1). The rates of susceptibility to amoxicillin-clavulanate (MIC50, 8 mg/mL; MIC90,
16 mg/mL), cefadroxil, ciprofloxacin (MIC50, 0.015 mg/mL; MIC90, .4 mg/mL), and tri-
methoprim-sulfamethoxazole (MIC50, #0.12 mg/mL; MIC90, .4 mg/mL) were 79.6%,
82.5%, 72.5%, and 68.2%, respectively (Table 2). Higher rates of susceptibility to fosfomycin
(MIC50, 0.5 mg/mL; MIC90, 1 mg/mL; 99.0% susceptible using Clinical and Laboratory Standards
Institute [CLSI] guidelines and 97.7% susceptible using European Committee on Antimicrobial
Susceptibility Testing [EUCAST] guidelines), amdinocillin (MIC50, 0.5 mg/mL; MIC90, 4 mg/mL;
94.1% susceptible), nitrofurantoin (MIC50, 16 mg/mL; MIC90, 32 mg/mL; 97.3% susceptible
using CLSI guidelines and 98.7% susceptible using EUCAST guidelines), and nitroxoline
(99.9% susceptible) were seen for all E. coli isolates. Further stratification, based on collection
setting, gender, and/or culture source, rates of susceptibility to comparator agents for coun-
tries from which at least 30 isolates were collected can be found in Tables S1 and S2 in the
supplemental material for E. coli and S. saprophyticus, respectively.

Identical gepotidacin MIC50 and MIC90 values (MIC50, 2 mg/mL; MIC90, 4 mg/mL; 94.5% to
97.2% of isolates inhibited at #4 mg/mL) were observed among subsets of E. coli resistant
to amoxicillin-clavulanate, ciprofloxacin, amdinocillin, nitrofurantoin, or trimethoprim-sulfame-
thoxazole. Only the fosfomycin-resistant isolates (n = 25) had a different gepotidacin MIC90

value of 8mg/mL, with 84.0% of gepotidacin MIC values being#4mg/mL (Table 1).
An ESBL-producing phenotype was observed in 616 (17.3%) of 3,560 E. coli isolates

tested. Gepotidacin (MIC50, 2 mg/mL; MIC90, 4 mg/mL) activity against these isolates remained
comparable to that for non-ESBL-producing E. coli isolates (MIC50, 2 mg/mL; MIC90, 2 mg/mL)
(Table 1). Amoxicillin-clavulanate (MIC50, 16 mg/mL; MIC90, 32 mg/mL), cefadroxil, ciprofloxacin
(MIC50,.4mg/mL; MIC90,.4mg/mL), and trimethoprim-sulfamethoxazole (MIC50,.4mg/mL;
MIC90, .4 mg/mL) had susceptibility rates of 49.1%, 3.7%, 21.5%, and 39.8%, respectively,
against ESBL-producing E. coli isolates. However, the numbers of observed isolates susceptible
to fosfomycin (96.6% using CLSI guidelines and 95.1% using EUCAST guidelines), amdinocillin
(96.8%), nitrofurantoin (92.7% using CLSI guidelines and 96.4% using EUCAST guidelines), and
nitroxoline (100%) remained high (Table 2).

Of all tested E. coli isolates, 899 (25.3%) and 1,129 (31.7%) were resistant to ciprofloxacin
and trimethoprim-sulfamethoxazole, respectively (Table 2). The gepotidacin MIC50 and MIC90

values for these resistant populations were 2 and 4 mg/mL, respectively, similar to those for
their respective susceptible population counterparts (MIC50, 2 mg/mL; MIC90, 2 mg/mL) (data
not shown). Amoxicillin-clavulanate, cefadroxil, ciprofloxacin, and trimethoprim-sulfamethoxa-
zole susceptibility rates were,70% for these resistant subsets, while fosfomycin, amdinocillin,
nitrofurantoin, and nitroxoline susceptibility rates were.90% (Table 2).

A total of 244 E. coli isolates (6.9%) had a multidrug-resistant (MDR) phenotype.
Gepotidacin activities for MDR (MIC50, 2 mg/mL; MIC90, 4 mg/mL) and non-MDR (MIC50,
2mg/mL; MIC90, 2mg/mL) isolates were similar (Table 1). Analogous to the data for ESBL-pro-
ducing isolates, low susceptibility rates were seen for amoxicillin-clavulanate (MIC50, 16mg/mL;
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TABLE 2 Activity of gepotidacin and comparator antimicrobial agents tested against E. coli and selected subsets

Isolate type and antimicrobial agent
(no. of isolates tested)/Phenotype

MIC50

(mg/mL)
MIC90

(mg/mL)

Result with CLSI
guidelines (%)a

Result with EUCAST
guidelines (%)a

Sensitive Resistant Sensitive Resistant
All E. coli isolates (3,560)
Gepotidacin 2 2
Ciprofloxacin 0.015 .4 72.5 25.3 72.5 25.3
Amikacin 4 8 99.5 0.3 98.2b 1.8
Amoxicillin-clavulanic acidc 8 16 79.6 5.7
Cefadroxil d 82.5e 17.5
Ceftriaxone #0.06 .8 83.7 16.1 83.7f 16.3
Fosfomycin 0.5 1 99.0g 0.7 97.7h 2.3
Mecillinam 0.5 4 94.1g 4.2 94.1h 5.9
Nitrofurantoin 16 32 97.3 1.3 98.7e 1.3
Nitroxoline d 99.9e 0.1
Piperacillin-tazobactamc 2 8 94.7 2.8 94.7 5.3
Trimethoprim-sulfamethoxazolec #0.12 .4 68.2 31.8 68.2 31.3

ESBL-producing isolates (616)
Gepotidacin 2 4
Ciprofloxacin .4 .4 21.5 74.6 21.5 74.6
Amikacin 4 8 97.9 1.1 91.7b 8.3
Amoxicillin-clavulanic acidc 16 32 49.1 19.7
Cefadroxil d 3.7e 96.3
Ceftriaxone .8 .8 6.0 93.2 6.0f 94
Fosfomycin 0.5 2 96.6g 2.9 95.1h 4.9
Mecillinam 1 4 96.8g 2.3 96.8h 3.2
Nitrofurantoin 16 32 92.7 3.6 96.4e 3.6
Nitroxoline d 100.0e 0.0
Piperacillin-tazobactamc 4 16 81.4 9.0 81.4 18.6
Trimethoprim-sulfamethoxazolec .4 .4 39.8 60.2 39.8 59.5

Ciprofloxacin-resistant isolates (899)
Gepotidacin 2 4
Ciprofloxacin .4 .4 0.0 100.0 0.0 100.0
Amikacin 4 8 98.4 0.8 93.8b 6.2
Amoxicillin-clavulanic acidc 8 16 60.0 9.6
Cefadroxil d 49.7e 50.3
Ceftriaxone 4 .8 49.6 50.2 49.6f 50.4
Fosfomycin 0.5 2 97.1g 2.2 95.2h 4.8
Mecillinam 1 4 94.7g 4.1 94.7h 5.3
Nitrofurantoin 16 32 93.5 3.7 96.3e 3.7
Nitroxoline d 99.9e 0.1
Piperacillin-tazobactamc 4 16 85.5 7.2 85.5 14.5
Trimethoprim-sulfamethoxazolec .4 .4 44.8 55.2 44.8 54.6

Trimethoprim-sulfamethoxazole-resistant isolates (1,129)
Gepotidacin 2 4
Ciprofloxacin 0.25 .4 51.7 49.3 51.7 43.9
Amikacin 4 8 98.7 0.8 95.7b 4.3
Amoxicillin-clavulanic acidc 8 16 64.2 8.7
Cefadroxil d 67.5e 32.5
Ceftriaxone #0.06 .8 68.3 31.4 68.3f 31.7
Fosfomycin 0.5 2 98.2g 1.5 96.3h 3.7
Mecillinam 1 8 90.8g 6.7 90.8h 9.2
Nitrofurantoin 16 32 95.1 2.3 97.7e 2.3
Nitroxoline d 99.9e 0.1
Piperacillin-tazobactamc 2 16 88.8 6.2 88.8 11.2
Trimethoprim-sulfamethoxazolec .4 .4 0.0 100.0 0.0 98.7

MDR isolates (244)
Gepotidacin 2 4
Ciprofloxacin .4 .4 0.4 95.9 0.4 95.9
Amikacin 4 16 93.4 3.7 79.1b 20.9

(Continued on next page)
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MIC90, 32 mg/mL; 20.5% susceptible), cefadroxil (7.8% susceptible), ciprofloxacin (MIC50,
.4 mg/mL; MIC90, .4 mg/mL; 0.4% susceptible), and trimethoprim-sulfamethoxazole
(MIC50, .4 mg/mL; MIC90, .4 mg/mL; 29.9% susceptible) against MDR isolates. Against
these isolates, susceptibility rates of .90% were observed for fosfomycin (93.4% using CLSI
guidelines and 91.8% using EUCAST guidelines), amdinocillin (95.1%), nitrofurantoin (89.8%
using CLSI guidelines and 93.4% using EUCAST guidelines), and nitroxoline (100.0%) (Table 2).

Isolates were stratified into outpatient and inpatient subsets based on the medical
service line provided by the participating sites. Gepotidacin was active against the outpatient
isolates (MIC50, 2 mg/mL; MIC90, 2mg/mL) and inhibited 98.2% of E. coli isolates at #4mg/mL
(Table 1). Similar results were observed for gepotidacin against the inpatient isolates (MIC50,
2mg/mL; MIC90, 2mg/mL; 97.8% of isolates with MICs of#4mg/mL). For some of the compar-
ator agents, greater rates of susceptibility were seen for outpatient isolates, compared with
the inpatient subset (amoxicillin-clavulanic acid: outpatient, 81.6%; inpatient, 75.4%; cefadroxil:
outpatient, 85.3%; inpatient, 76.5%; cefazolin: outpatient, 83.0%; inpatient, 74.4%; ceftriaxone:
outpatient, 86.5%; inpatient, 78.1%; ciprofloxacin: outpatient, 76.3%; inpatient, 64.4%; tri-
methoprim-sulfamethoxazole: outpatient, 70.5%; inpatient, 63.6%) (data not shown). The
percentages of isolates susceptible to fosfomycin, amdinocillin, nitrofurantoin, and nitroxo-
line showed little difference (,1.0%) between outpatient and inpatient populations (data
not shown).

Gepotidacin MIC50 and MIC90 values against 344 S. saprophyticus isolates were 0.06 and
0.12 mg/mL, respectively, and all observed gepotidacin MIC values were #0.25 mg/mL
(Table 1). Most agents tested were active against this species, with susceptibility rates of
.90% for trimethoprim-sulfamethoxazole (MIC50, #0.5 mg/mL; MIC90, #0.5 mg/mL; 97.1%
susceptible), ciprofloxacin (MIC50, 0.25mg/mL; MIC90, 0.5mg/mL; 99.4% susceptible), nitrofuran-
toin (MIC50, 16mg/mL; MIC90, 16mg/mL; 100.0% susceptible), and vancomycin (MIC50, 1mg/mL;
MIC90, 2mg/mL; 100.0% susceptible) (Table 3).

DISCUSSION

UTIs remain a common global health problem. Increasing resistance to oral agents,
including cephalosporins, fluoroquinolones, and trimethoprim-sulfamethoxazole, have
limited their use as empirical treatment (4). Current oral first-line empirical options for
treating uUTIs include fosfomycin, nitrofurantoin, and amdinocillim (6). The data from
this large collection of recent E. coli isolates from UTIs support these treatment options,
as the proportions of all E. coli isolates that were susceptible to ciprofloxacin, cefadroxil, and

TABLE 2 (Continued)

Isolate type and antimicrobial agent
(no. of isolates tested)/Phenotype

MIC50

(mg/mL)
MIC90

(mg/mL)

Result with CLSI
guidelines (%)a

Result with EUCAST
guidelines (%)a

Sensitive Resistant Sensitive Resistant
Amoxicillin-clavulanic acidc 16 32 20.5 24.2
Cefadroxil d 7.8e 92.2
Ceftriaxone .8 .8 5.3 5.3 5.3f 94.7
Fosfomycin 0.5 8 93.4g 5.7 91.8h 8.2
Mecillinam 1 8 95.1g 3.3 95.1h 4.9
Nitrofurantoin 16 64 89.8 6.6 93.4e 6.6
Nitroxoline d 100.0e 0.0
Piperacillin-tazobactamc 8 64 53.5 22.2 53.5 46.5
Trimethoprim-sulfamethoxazolec .4 .4 29.9 70.1 29.9 69.7

aCriteria published by CLSI (29) and EUCAST (31). Blank fields indicate no interpretive criteria, with the exception of amoxicillin-clavulanic acid (due to the 2:1 ratio, only CLSI
criteria were applied).

bFor UTIs.
cAmoxicillin-clavulanic acid was tested at a 2:1 ratio, piperacillin-tazobactam was tested with tazobactam at a fixed concentration of 4mg/mL, and trimethoprim-
sulfamethoxazole was tested at a 1:19 ratio.
dSusceptibility testing by disk diffusion; MICs were not determined.
eBreakpoints for uUTIs.
fBreakpoints for infections other than meningitis.
gTested by agar dilution; UTI breakpoints.
hTested by agar dilution; breakpoints for oral treatment of uUTIs.
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trimethoprim-sulfamethoxazole were smaller (68.2% to 82.5%) than those for fosfomycin,
amdinocillin, nitrofurantoin, and nitroxoline (94.1% to 99.9%). The contrast between these
two drug sets was even more evident when the susceptibility rates against ESBL-producing
and MDR isolates were compared. Against both ESBL-producing and MDR isolates, limited
activity and low susceptibility rates (,50% susceptible) were seen for amoxicillin-clavulanate,
cefadroxil, ciprofloxacin, and trimethoprim-sulfamethoxazole, while susceptibility rates of
.90% were observed for fosfomycin, amdinocillin, nitrofurantoin, and nitroxoline.

The in vitro activities of fosfomycin, amdinocillin, nitrofurantoin, and nitroxoline against
UTI E. coli strains, regardless of phenotype, have renewed interest in these old agents as oral
options for treating UTIs. Nitrofurantoin is widely available and was approved by the U.S. FDA
in 1954, and nitroxoline has been in clinical use in western European countries since 1962.
Both agents have limitations, such as lack of PK and PD data, mainly bacteriostatic activity,
and limited commercial availability (for nitroxoline) (22). Fosfomycin was introduced in
Europe in the 1970s and was approved by the U.S. FDA in 1996 for single-dose treatment
of uUTIs caused by E. coli or Enterococcus faecalis (23). Although fosfomycin is active in
vitro, it has been reported that older clinical trial studies might have overestimated the
clinical efficacy of fosfomycin (24); furthermore, a higher clinical cure rate with nitrofuran-
toin, compared with fosfomycin, has been reported (25). Finally, amdinocillin has been used
for many decades for uUTIs in Nordic European countries and has shown in vitro stability
against CTX-M-producing E. coli strains. However, clinical efficacy studies with these MDR iso-
lates are lacking (26). Despite the potent in vitro activity shown by these older agents, these
various limitations demonstrate the need for the clinical development of new agents (27).

Gepotidacin is currently under clinical development for the treatment of uUTIs and
urogenital gonorrhea. In summary, gepotidacin demonstrated potent in vitro activity
against a large global collection of contemporary E. coli isolates causing UTIs, inhibiting
98.0% of all E. coli isolates at MIC values of #4 mg/mL. Gepotidacin retained this activity
against both ESBL-producing and MDR subsets, with 94.3% and 96.3%, respectively, of gepoti-
dacin MIC values being#4mg/mL. When tested against many subsets of drug-resistant E. coli
phenotypes, gepotidacin maintained similar MIC50 and MIC90 values (2 and 4mg/mL, respec-
tively), with the single exception of fosfomycin-resistant E. coli strains, for which the gepoti-
dacin MIC90 value was one doubling dilution higher at 8 mg/mL. However, this difference
may be a result of the small sample size (n = 25). Of note, gepotidacin retained activity
against isolates that were resistant to current first-line agents for uUTIs, with MIC values of
#4 mg/mL for 84.0%, 96.7%, 95.7%, and 96.1% of isolates that were resistant to fosfomycin,
amdinocillin, nitrofurantoin, and trimethoprim-sulfamethoxazole, respectively. Previous studies
demonstrated that the gepotidacin concentration in urine after administration of 1,500 mg
twice a day had a maximum value of 580mg/mL between doses on day 1 and 920mg/mL on
day 4. Also, the steady-state total trough levels remained above 4 mg/mL within 12 h (15).
These PK parameters indicate that the gepotidacin concentration in urine during the dosing

TABLE 3 Activity of gepotidacin and comparator antimicrobial agents tested against
S. saprophyticus (n = 344)

Antimicrobial agent
MIC50

(mg/mL)
MIC90

(mg/mL)

Result with CLSI
guidelines (%)a

Result with EUCAST
guidelines (%)a

Sensitive Resistant Sensitive Resistant
Gepotidacin 0.06 0.12
Ciprofloxacin 0.25 0.5 99.4 0.3 99.4b 0.6
Fosfomycin 128 .256
Nitrofurantoin 16 16 100.0 0.0 100.0c 0.0
Penicillin 0.25 0.5 3.5 96.5
Trimethoprim-sulfamethoxazoled #0.5 #0.5 97.1 2.9 97.1 1.7
Vancomycin 1 2 100.0 0.0 100.0 0.0
aCriteria published by CLSI (29) and EUCAST (31). Blank fields indicate no interpretive criteria.
bDefined as susceptible, with increased exposure.
cBreakpoints for uUTIs.
dTrimethoprim-sulfamethoxazole was tested at a 1:19 ratio.
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interval remains above the MIC values for 98.0% of the E. coli isolates tested here, including re-
sistant subsets.

Finally, gepotidacin (MIC100, 0.25 mg/mL) also demonstrated potent in vitro activity
against contemporary S. saprophyticus isolates, against which older agents, such as fosfomy-
cin, amdinocillin, and nitroxoline, lack activity. These in vitro data provide recent information
and benchmark for gepotidacin activity prior to its clinical approval and use for treating
uUTIs. As resistance to current therapy options continues to increase, these data support fur-
ther clinical development of gepotidacin as a potential new agent for the treatment of uUTIs.

MATERIALS ANDMETHODS
Bacterial isolates. A total of 3,560 E. coli isolates and 344 S. saprophyticus isolates were collected

from 92 medical centers in 25 countries in 2019 to 2020 as part of the SENTRY Antimicrobial Surveillance
Program. The geographic distribution of isolates included the United States (all nine U.S. Census
Divisions, 45 medical centers) (2,176 isolates [55.7% overall]), Europe (17 countries, 34 medical centers)
(1,252 isolates [32.1% overall]), Latin America (6 countries, 9 medical centers) (249 isolates [6.4% overall]),
and Japan (4 medical centers) (227 isolates [5.8% overall]). All isolates were cultured from urine or ure-
thral catheter samples and deemed responsible for UTI based on local criteria. Only 1 isolate per patient
per infection episode was included in this study. Isolates were collected from both female (81.1%) and
male (18.9%) patients. Most isolates (68.4%) were recovered from samples that had been collected from
patients associated with medical service lines representing outpatient treatment, including ambulatory/
outpatient, family practice, or emergency room services. Other isolates (31.6%) were cultured from
patients in medical service lines suggestive of hospitalized individuals. Species identification was con-
firmed by standard biochemical tests and, where necessary, the matrix-assisted laser desorption ioniza-
tion (MALDI) Biotyper (Bruker Daltonics, Billerica, MA, USA) according to the manufacturer’s instructions.

Susceptibility testing. The broth microdilution method was performed according to CLSI methods
to determine susceptibility to gepotidacin and its comparator agents (28). Susceptibility to amoxicillin-clavula-
nate was tested at the CLSI-recommended 2:1 ratio. Susceptibility to amdinocillin and fosfomycin was deter-
mined by reference agar dilution following recommendations made by the CLSI in the M07 (28) and M100 (29)
documents. The testing medium utilized was Mueller-Hinton agar, and fosfomycin testing included supple-
mentation with glucose-6-phosphate at a final concentration of 25 mg/mL. Susceptibility to the comparators
nitroxoline (30mg) and cefadroxil (30 mg) was determined by disk diffusion following the CLSI M02 and M100
guidelines (29, 30). Disk inhibition zones and MIC values were validated by concurrently testing CLSI- and/or
EUCAST-recommended quality control (QC) reference strains ATCC 25922, ATCC 27853, ATCC 29213, and
ATCC 35218. All QC results were within published ranges (29). CLSI (29) and EUCAST (31) susceptibility interpre-
tive criteria were used to determine susceptibility/resistance percentages for comparator agents. A single value
was reported when susceptibility breakpoints agreed between CLSI and EUCAST guidelines (ciprofloxacin, cef-
triaxone, amdinocillin, and trimethoprim-sulfamethoxazole) or when breakpoints exist for only one agency
(cefadroxil and nitroxoline [EUCAST]). A single value (CLSI) was also reported for amoxicillin-clavulanate tested
at a 2:1 ratio. When breakpoints differ between CLSI and EUCAST guidelines (fosfomycin and nitrofurantoin),
the percentages of isolates considered susceptible with each breakpoint are labeled accordingly.

Resistant subsets. CLSI breakpoints were applied to define isolates with a phenotype of resistance
to the following standard-of-care agents: amoxicillin-clavulanate, ciprofloxacin, fosfomycin, mecillinam, nitrofur-
antoin, and trimethoprim-sulfamethoxazole. The ESBL-producing phenotype was defined for E. coli as MIC val-
ues of $2 mg/mL for aztreonam, ceftazidime, or ceftriaxone (29). Isolates meeting these criteria can produce
ESBL, have plasmid AmpC, and/or overexpress the intrinsic AmpC gene but are described here as presumptive
ESBL producers. All E. coli strains were susceptible to meropenem. The MDR designation for isolates was similar
to the criteria published by Magiorakos et al. (32), who define MDR as not susceptible to$1 agent in$3 anti-
microbial classes. The antimicrobial classes and representative drugs used in the E. coli MDR analysis included
broad-spectrum cephalosporins (ceftriaxone and ceftazidime), carbapenems (meropenem), a broad-spectrum
penicillin combined with a b-lactamase inhibitor (piperacillin-tazobactam), fluoroquinolones (ciprofloxacin and
levofloxacin), and aminoglycosides (gentamicin and amikacin).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.01 MB.
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