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a b s t r a c t 

Objectives: To evaluate the in-vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, 

meropenem-vaborbactam, imipenem-relebactam and comparator agents against contemporary Pseu- 

domonas aeruginosa isolates from US hospitals. 

Methods: In total, 3184 isolates were collected consecutively from 71 US medical centres in 2020–2021, 

and susceptibility tested by reference broth microdilution. Clinical Laboratory Standard Institute break- 

points were applied. 

Results: Ceftazidime-avibactam [97.0% susceptible (S)], ceftolozane-tazobactam (98.0%S), imipenem- 

relebactam (97.3%S) and tobramycin (96.4%S) were the most active agents against the aggregate P. 

aeruginosa isolate collection, and retained good activity against piperacillin-tazobactam-non-susceptible, 

meropenem-non-susceptible and multi-drug-resistant (MDR) isolates. All other antimicrobials tested 

showed limited activity against piperacillin-tazobactam-non-susceptible, meropenem-non-susceptible and 

MDR isolates. The most common infections were pneumonia (45.9%), skin and skin structure infec- 

tions (19.0%), urinary tract infections (17.0%) and bloodstream infections (11.7%); ceftazidime-avibactam, 

ceftolozane-tazobactam and imipenem-relebactam showed consistent activity against isolates from these 

infection types. Susceptibility to piperacillin-tazobactam and meropenem was lower among isolates from 

pneumonia compared with other infection types. 

Conclusions: Ceftazidime-avibactam, ceftolozane-tazobactam and imipenem-relebactam were highly ac- 

tive, and exhibited similar coverage against a large contemporary collection of P. aeruginosa isolates from 

US hospitals. Cross-resistance among the newer β-lactams/ β-lactam inhibitors (BL/BLIs) varied markedly; 

≥72.1% of isolates resistant to one of the three newer BL/BLIs approved for P. aeruginosa treatment re- 

mained susceptible to at least one of the other two BL/BLIs, indicating that all three should be tested in 

the clinical laboratory. These three BL/BLIs represent valuable therapeutic options for P. aeruginosa infec- 

tion. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Pseudomonas aeruginosa is a common cause of healthcare- 

ssociated infections, including pneumonia, skin and skin structure 

nfections (SSSIs), bloodstream infections (BSIs) and complicated 

rinary tract infections (cUTIs). It is estimated that P. aeruginosa 

s responsible for 8% of all healthcare-associated infections [1] . 
∗ Corresponding author. Address: JMI Laboratories, 345 Beaver Kreek Centre, Suite 

, North Liberty, IA 52317, USA. Tel.: + 1 319 665 3370; fax: + 1 319 665 3371. 
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he most common type of P. aeruginosa infection is pneumonia; P. 

eruginosa and Staphylococcus aureus are the most commonly iso- 

ated bacteria from patients with healthcare-associated pneumonia 

nd ventilator-associated pneumonia in US medical centres [1 , 2] . 

t is also estimated that P. aeruginosa is responsible for 16.2% of 

nfections in intensive care units (ICUs), including 23% of all ICU- 

cquired respiratory infections [2 , 3] . 

Independent of clinical presentation or infection source, β- 

actams (BLs) remain the backbone therapy for treatment of se- 

ious P. aeruginosa infections, potentially in combination with a 

econd agent such as an aminoglycoside. Moreover, for difficult- 
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o-treat P. aeruginosa , defined as isolates that exhibit non- 

usceptibility to piperacillin-tazobactam, ceftazidime, cefepime, 

ztreonam, meropenem, imipenem-cilastatin, ciprofloxacin and 

evofloxacin, guidelines currently recommend the use of newer 

L/ β-lactamase inhibitor (BLI) combinations, such as ceftazidime- 

vibactam, ceftolozane-tazobactam and imipenem-relebactam [4] . 

everal studies have shown that these three BL/BLI combina- 

ions are highly active against P. aeruginosa , including multi- 

rug-resistant (MDR) isolates, but studies comparing the antipseu- 

omonal activity of these compounds are scarce. This study eval- 

ated the in-vitro activity of ceftazidime-avibactam, ceftolozane- 

azobactam, imipenem-relebactam and many comparators, includ- 

ng meropenem-vaborbactam, against a large collection of contem- 

orary P. aeruginosa isolates from US hospitals. 

. Methods 

Participating medical centres were invited to collect a specific 

umber (30–100, depending on infection type) of consecutive iso- 

ates (one per patient) per infection type per year. Only bacterial 

solates determined to be significant by local criteria as the re- 

orted probable cause of an infection were included in this inves- 

igation. The organism collection included 3184 P. aeruginosa iso- 

ates, which were evaluated in the present study. P. aeruginosa iso- 

ates were from 71 medical centres across 36 states from all nine 

S census divisions. 

Antimicrobial susceptibility was evaluated by reference broth 

icrodilution in a monitoring laboratory (JMI Laboratories, North 

iberty, IA, USA), and conducted according to Clinical and Lab- 

ratory Standards Institute (CLSI) procedures (Document M07) 

5] . Ceftazidime-avibactam, ceftolozane-tazobactam, imipenem- 

elebactam and piperacillin-tazobactam were tested with the BLI at 

 fixed concentration of 4 mg/L, whereas meropenem-vaborbactam 

as tested with vaborbactam at a fixed concentration of 8 mg/L 

5] . Minimum inhibitory concentration (MIC) values were inter- 

reted according to CLSI and/or US Food and Drug Administration 

FDA) breakpoints when available [6 , 7] . Meropenem-vaborbactam 

s not approved for P. aeruginosa treatment in the USA; thus, 

eropenem-vaborbactam breakpoints published for Enterobac- 

erales ( ≤4/8/ ≥16 mg/L for susceptible/intermediate/resistant) 

ere applied for comparison. 

Isolates were categorized as MDR or extensively-drug-resistant 

XDR) according to criteria defined in 2012 by the joint Euro- 

ean and US Centers for Disease Control [8] . These criteria de- 

ne MDR as non-susceptible to at least one agent in at least 

hree antimicrobial classes, and XDR as susceptible to two classes 

r fewer. The following antimicrobial class representative agents 

nd CLSI interpretive criteria were applied: ceftazidime ( ≥16 

g/L), cefepime ( ≥16 mg/L), meropenem ( ≥4 mg/L), imipenem 

 ≥4 mg/L), piperacillin/tazobactam ( ≥32/4 mg/L), levofloxacin ( ≥2 

g/L), ciprofloxacin ( ≥1 mg/L), gentamicin ( ≥8 mg/L), amikacin 

 ≥32 mg/L), tobramycin ( ≥8 mg/L) and colistin ( ≥4 mg/L). 

. Results 

Overall, ceftazidime-avibactam [MIC 50/90 2/4 mg/L; 97.0% sus- 

eptible (S)], ceftolozane-tazobactam (MIC 50/90 0.5/2 mg/L; 98.0%S) 

nd imipenem-relebactam (MIC 50/90 0.25/1 mg/L; 97.3%S) were the 

ost active compounds against P. aeruginosa isolates ( Table 1 ). 

eropenem-vaborbactam inhibited 87.5% of isolates at ≤4 mg/L 

CLSI/US FDA susceptible breakpoint for Enterobacterales) and 

2.3% at ≤8 mg/L (EUCAST susceptible breakpoint for P. aeruginosa ) 

9] . Tobramycin was the most active comparator agent (MIC 50/90 

.5/1 mg/L; 96.4%S; Table 1 ). It is important to note that the 

igher ‘susceptibility’ rates of meropenem-vaborbactam in com- 

arison with meropenem are a result of the different breakpoints 
2 
pplied to the two compounds ( ≤2 mg/L for meropenem and ≤4 

g/L for meropenem-vaborbactam) rather than a substantial im- 

rovement in activity, as evidenced by the identical MIC 50/90 values 

btained for these two compounds ( Table 1 ). Overall susceptibil- 

ty rates for piperacillin-tazobactam, ceftazidime and meropenem 

ere 81.1%, 84.9% and 82.4% ( Table 1 ). 

Ceftazidime-avibactam, ceftolozane-tazobactam and imipenem- 

elebactam retained potent activity against piperacillin- 

azobactam-non-susceptible isolates (susceptibility rates of 85.6%, 

1.0% and 89.9%, respectively) and meropenem-non-susceptible 

solates (susceptibility rates of 84.8%, 90.2%, 86.3% respectively; 

able 1 ). Besides ceftazidime-avibactam, ceftolozane-tazobactam 

nd imipenem-relebactam, only tobramycin exhibited good activity 

gainst these resistant subsets ( Table 1 ). 

Ceftazidime-avibactam (MIC 50/90 4/16 mg/L; 81.1%S), 

eftolozane-tazobactam (MIC 50/90 2/8 mg/L; 88.2%S), imipenem- 

elebactam (MIC 50/90 1/4 mg/L; 85.3%S) and tobramycin (MIC 50/90 

/ > 16 mg/L; 82.2%S) were the only compounds with good activ- 

ty against MDR P. aeruginosa isolates ( Table 1 ). Meropenem- 

aborbactam inhibited 35.7% of MDR isolates at ≤4 mg/L 

56.2% at ≤8 mg/L), and showed MIC 50/90 values identical 

o meropenem (8/32 mg/L; Table 1 ). Ceftazidime-avibactam, 

eftolozane-tazobactam, imipenem-relebactam and tobramycin 

ere also the only compounds active against XDR isolates, with 

usceptibility rates varying from 71.5% to 81.2%, whereas all other 

gents tested were active against < 25% of isolates ( Table 1 ). 

The activities of the BL/BLIs and selected comparators stratified 

y infection type are displayed in Table 2 . P. aeruginosa was the 

econd most common organism isolated from patients hospital- 

zed with pneumonia (23.1% of cases) and SSSIs (7.1%), the fourth 

ost common organism isolated from patients with cUTIs (5.6%), 

nd the fifth most common organism isolated from patients with 

SIs (5.1%; data not shown). Ceftazidime-avibactam, ceftolozane- 

azobactam, imipenem-relebactam and tobramycin showed more 

onsistent activity across infection types compared with other 

gents. The lowest susceptibility rates were observed among iso- 

ates from pneumonia, except for imipenem-relebactam (SSSIs) and 

iprofloxacin (UTIs), whereas the highest susceptibility rates were 

sually among isolates from UTIs, except for meropenem (other 

nfections), ciprofloxacin (other infections) and tobramycin (SSSIs; 

able 2 ). 

Cross-resistance among the three most recently approved 

L/BLIs for P. aeruginosa treatment in the USA was also evalu- 

ted ( Table 3 ). Ceftazidime-avibactam remained active against 

1.7% and 52.5% of ceftolozane-tazobactam-non-susceptible 

nd imipenem-relebactam-non-susceptible isolates, respec- 

ively. Ceftolozane-tazobactam remained active against 54.7% and 

8.9% of ceftazidime-avibactam-non-susceptible and imipenem- 

elebactam-non-susceptible isolates, respectively. Imipenem- 

elebactam remained active against 6 4.2% and 6 4.8% of iso- 

ates non-susceptible to ceftazidime-avibactam and ceftolozane- 

azobactam, respectively. Most importantly, 72.1–82.1% of isolates 

esistant to one of the three newer BL/BLIs approved for P. aerug- 

nosa treatment remained susceptible to at least one of the other 

wo BL/BLIs ( Table 3 ). 

. Discussion 

Systemic P. aeruginosa infections are difficult to treat. This 

rganism is intrinsically resistant to many antimicrobial agents, 

nd can acquire a diverse array of resistance mechanisms [10 , 11] . 

rompt initiation of effective antimicrobial therapy is crucial to im- 

rove outcomes; however, a limited number of antimicrobials have 

 satisfactory spectrum of activity to be used for empiric therapy 

4 , 12 , 13] . 
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Table 1 

Activity of amikacin and comparator antimicrobial agents tested against Pseudomonas aeruginosa isolates from US medical centres. 

Antimicrobial agent 

MIC (mg/L) Susceptibility per CLSI a 

50% 90% %S %I %R 

P. aeruginosa ( n = 3184) 

Ceftazidime-avibactam 2 4 97.0 3.0 

Ceftolozane-tazobactam 0.5 2 98.0 0.9 1.0 

Imipenem-relebactam 0.25 1 97.3 1.8 0.9 

Meropenem-vaborbactam 

b 0.5 8 87.5 b 4.8 b 7.7 b 

Piperacillin-tazobactam 4 64 81.1 9.3 9.6 

Cefepime 2 16 86.6 8.9 4.5 

Ceftazidime 2 32 84.9 3.5 11.6 

Meropenem 0.5 8 82.4 5.0 12.6 

Imipenem 1 8 80.9 4.3 14.8 

Levofloxacin 0.5 8 72.2 8.9 18.9 

Ciprofloxacin 0.12 2 80.0 5.7 14.3 

Tobramycin 0.5 1 96.4 0.8 2.7 

Piperacillin-tazobactam-non-susceptible ( n = 603) 

Ceftazidime-avibactam 4 16 85.6 14.4 

Ceftolozane-tazobactam 2 4 91.0 4.5 4.5 

Imipenem-relebactam 0.5 4 89.9 6.6 3.4 

Meropenem-vaborbactam 

b 4 32 54.1 b 14.9 b 31.0 b 

Piperacillin-tazobactam 128 > 128 0.0 49.1 50.9 

Cefepime 16 32 39.6 39.1 21.2 

Ceftazidime 32 > 32 25.4 16.1 58.5 

Meropenem 4 32 45.9 7.5 46.6 

Imipenem 4 > 8 48.1 7.5 44.4 

Levofloxacin 2 32 43.1 14.1 42.8 

Ciprofloxacin 0.5 > 4 58.0 10.0 32.0 

Tobramycin 0.5 4 91.0 3.2 5.8 

Meropenem-non-susceptible ( n = 559) 

Ceftazidime-avibactam 4 16 84.8 15.2 

Ceftolozane-tazobactam 1 4 90.2 4.5 5.4 

Imipenem-relebactam 1 4 86.3 9.2 4.5 

Meropenem-vaborbactam 

b 8 32 29.2 b 26.8 b 44.0 b 

Piperacillin-tazobactam 32 > 128 41.7 25.0 33.3 

Cefepime 8 32 51.5 27.2 21.3 

Ceftazidime 8 > 32 54.9 7.7 37.4 

Meropenem 8 32 0.0 28.3 71.7 

Imipenem 8 > 8 12.3 10.7 76.9 

Levofloxacin 4 32 29.7 16.5 53.8 

Ciprofloxacin 1 > 4 47.8 9.8 42.4 

Tobramycin 0.5 16 87.3 2.7 10.0 

Multi-drug-resistant ( n = 482) 

Ceftazidime-avibactam 4 16 81.1 18.9 

Ceftolozane-tazobactam 2 8 88.2 5.4 6.4 

Imipenem-relebactam 1 4 85.3 10.0 4.7 

Meropenem-vaborbactam 

b 8 32 35.7 b 20.5 b 43.8 b 

Piperacillin-tazobactam 64 > 128 16.4 36.9 46.7 

Cefepime 16 32 30.5 42.3 27.2 

Ceftazidime 32 > 32 34.0 13.3 52.7 

Meropenem 8 32 21.6 13.3 65.1 

Imipenem 8 > 8 24.3 10.8 64.9 

Levofloxacin 4 32 17.6 17.2 65.1 

Ciprofloxacin 2 > 4 34.6 14.7 50.6 

Tobramycin 1 > 16 82.2 5.0 12.9 

Extensively-drug-resistant ( n = 256) 

Ceftazidime-avibactam 8 32 71.5 28.5 

Ceftolozane-tazobactam 2 16 81.2 8.2 10.5 

Imipenem-relebactam 2 4 79.6 13.7 6.6 

Meropenem-vaborbactam 

b 16 32 20.3 b 19.9 b 59.8 b 

Piperacillin-tazobactam 128 > 128 5.9 37.1 57.0 

Cefepime 16 > 32 13.7 48.0 38.3 

Ceftazidime 32 > 32 23.4 15.2 61.3 

Meropenem 16 32 9.4 10.5 80.1 

Imipenem 8 > 8 14.5 10.9 74.6 

Levofloxacin 8 > 32 2.3 18.0 79.7 

Ciprofloxacin 2 > 4 20.3 14.1 65.6 

Tobramycin 1 > 16 76.2 7.4 16.4 

MIC, minimum inhibitory concentration; CLSI, Clinical and Laboratory Standards Institute; S, susceptible; I, intermediate; R, resistant. 
a Criteria as published by CLSI (2022). 
b Not approved to treat P. aeruginosa infections in the USA; Enterobacterales breakpoints of ≤4/8/ ≥16 mg/L (S/I/R) were applied for comparison. 
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Table 2 

Antimicrobial susceptibility of Pseudomonas aeruginosa stratified by infection type. 

Antimicrobial 

% Susceptible (no. of isolates) a 

Pneumonia 

( n = 1462) 

SSSI 

( n = 606) 

UTI 

( n = 542) 

BSI 

( n = 372) 

Others 

( n = 202) 

Ceftazidime-avibactam 95.7 97.4 99.4 97.6 98.0 

Ceftolozane- 

tazobactam 

97.0 98.8 99.6 97.6 99.5 

Imipenem-relebactam 96.8 96.4 99.1 98.7 99.0 

Meropenem- 

vaborbactam 

b 

83.5 b 90.2 b 92.4 b 89.5 b 92.0 b 

Piperacillin- 

tazobactam 

76.4 82.2 88.4 84.1 86.1 

Ceftazidime 80.8 86.6 91.5 87.4 87.6 

Meropenem 77.2 85.5 87.6 87.4 88.6 

Ciprofloxacin 79.1 81.4 77.1 83.6 83.7 

Tobramycin 95.4 97.9 96.5 97.8 97.0 

SSSI, skin and skin structure infection; UTI, urinary tract infection; BSI, bloodstream infection; CLSI, Clinical and Laboratory Standards Institute; S, susceptible; I, intermediate; 

R, resistant. 
a Criteria as published by CLSI (2022). 
b Not approved to treat P. aeruginosa infections in the USA; Enterobacterales breakpoints of ≤4/8/ ≥16 mg/L (S/I/R) were applied for comparison. 

Table 3 

Cross-resistance among newer β-lactamase inhibitor combinations. 

Resistance 

phenotype ( n ) 

% Susceptible a 

CAZ-AVI C-T IMI-REL CAZ-AVI or C-T 

or IMI-REL b 

CAZ-AVI-NS (95) – 54.7 64.2 82.1 

C-T-NS (63) 31.7 – 64.8 73.0 

IMI-REL-NS (61) 52.5 68.9 – 72.1 

CAZ-AVI, ceftazidime-avibactam; NS, non-susceptible; C-T, ceftolozane-tazobactam; 

IMI-REL, imipenem-relebactam. 
a Criteria as published by Clinical and Laboratory Standards Institute (2022). 
b Percentages of isolates susceptible to at least one of the other two β-lactams/ β- 

lactamase inhibitors. 

a

s

p

i

o

r

c

b

c

B

t

l

B

t

r

P

s

A

i

c

8

m

s

P

i

B

a

m

r

o

f

t

m

m

p

v

t

t

r

p

p

B

w

t

t

n

t

F

t

m

d

C

2

c

p

t

B

M

s

T

C

p

t

L

C

G

v

Novel BL/BLIs represent valuable therapeutic options for P. 

eruginosa infections, especially in medical centres with high re- 

istance rates for the traditional antipseudomonal BLs, such as 

iperacillin-tazobactam, ceftazidime, cefepime, meropenem and 

mipenem [4] . The results of this study corroborate those of 

ther investigators by showing that the BL/BLIs approved most 

ecently for P. aeruginosa treatment (i.e., ceftazidime-avibactam, 

eftolozane-tazobactam and imipenem-relebactam) provide a 

road coverage of P. aeruginosa causing infections in US medical 

entres, with 97.0–98.0% susceptibility rates. Notably, these three 

L/BLIs retained good activity against isolates resistant to tradi- 

ional antipseudomonal BLs, as well as against MDR and XDR iso- 

ates. 

It is also important to note that the activities of these new 

L/BLIs against P. aeruginosa from US medical centres are similar 

o those reported for other geographic regions. The present authors 

ecently evaluated the activities of all four new BL/BLIs against 360 

. aeruginosa isolates collected in 2020 from patients with skin and 

oft tissue infections from Western Europe, Eastern Europe, the 

sia-Pacific region and Latin America, and observed susceptibil- 

ty rates of 96.8–100.0% for ceftazidime-avibactam, 95.2–100.0% for 

eftolozane-tazobactam, 95.2–99.5% for imipenem-relebactam and 

4.1–96.6% for meropenem-vaborbactam based on European Com- 

ittee on Antimicrobial Susceptibility Testing criteria; the lowest 

usceptibility rates were found in Eastern Europe and the Asia- 

acific region [14] . 

Moreover, the present results complement the findings of other 

nvestigators by providing the comparative activity of the three 

L/BLIs approved for P. aeruginosa treatment in the USA against 

 large collection of contemporary P. aeruginosa isolates from US 
4

edical centres. The results clearly showed that rates of cross- 

esistance among the newer BL/BLIs varied markedly, and ≥72.1% 

f isolates resistant to one of the three newer BL/BLIs approved 

or P. aeruginosa treatment remained susceptible to at least one of 

he other two BL/BLIs. These results reflect the variety of resistance 

echanisms expressed by P. aeruginosa , and illustrate how these 

echanisms may have different impacts on each of these com- 

ounds. Mechanisms of resistance to these new BL/BLIs are usually 

ery complex, and caused by the presence and interaction of mul- 

iple mutation-driven resistance mechanisms [11 , 15 , 16] . Therefore, 

he activity of these compounds, and especially the rates of cross- 

esistance between them, may vary widely depending on selective 

ressure due to previous antibiotic usage. These results also em- 

hasize the importance of routine susceptibility testing of all three 

L/BLIs against P. aeruginosa isolates, especially in medical centres 

ith high rates of resistance. 

One limitation of this study was that cefiderocol was not tested; 

his novel cephalosporin was approved recently by the US FDA for 

reatment of infections caused by P. aeruginosa and other Gram- 

egative organisms [17] . Unfortunately, the authors were not able 

o obtain cefiderocol powder at the time the study was performed. 

In conclusion, the BL/BLIs approved most recently by the US 

DA for treatment of P. aeruginosa infections represent valuable 

herapeutic options. Large surveillance programmes are crucial to 

onitor the activity and guide the clinical use of new antipseu- 

omonal agents in US medical centres. 
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