#### Activity of Cefiderocol and Comparators Against US Enterobacterales, including Carbapenem-Resistant Isolates, from the SENTRY Antimicrobial Surveillance Program (2020-2021)

Dee Shortridge, Jennifer M. Streit, Rodrigo Mendes, Mariana Castanheira

JMI Laboratories, North Liberty, Iowa

# Objective

Cefiderocol is a siderophore-conjugated cephalosporin with broad activity against Gram-negative bacteria, including carbapenem-resistant isolates.

Cefiderocol was approved by the FDA for treatment of complicated urinary tract infection, hospital-acquired bacterial pneumonia, and ventilator-associated bacterial pneumonia.

The objective in this study was the analysis of the susceptibility of cefiderocol and comparators against US Enterobacterales, including carbapenem-resistant (CRE) isolates, collected in 2020-2021.

#### Methods

- A total of 7,774 Enterobacterales isolates were consecutively collected from 32 US hospitals during 2020-2021.
- Isolates from all infection types were included in this analysis.
- Susceptibility testing was performed using the CLSI broth microdilution method. Cefiderocol was tested in iron-depleted cation-adjusted Mueller-Hinton broth. CLSI/FDA and EUCAST (2022) breakpoints were applied. CRE were identified as having an MIC ≥4 mg/L to meropenem and/or imipenem (CLSI).
- Other agents tested included the beta-lactam/beta-lactamase inhibitor (BL/BLI) combinations ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam.



### Results

#### Table 1. Susceptibilities of US Enterobacterales and Resistant Subgroups

| Antimicrobial agent                         | m                 | g/L               | CLSI/FDA <sup>a</sup> | <b>EUCAST</b> <sup>a</sup> |
|---------------------------------------------|-------------------|-------------------|-----------------------|----------------------------|
|                                             | MIC <sub>50</sub> | MIC <sub>90</sub> | %S                    | %S                         |
| All (n=7,774)                               |                   |                   |                       |                            |
| Cefiderocol                                 | 0.06              | 0.5               | 99.9                  | 99.2                       |
| Meropenem                                   | 0.03              | 0.06              | 99.0                  | 99.3                       |
| Meropenem-vaborbactam                       | 0.03              | 0.06              | 99.8                  | 99.9                       |
| Imipenem-relebactam                         | 0.12              | 0.5               | 94.8 <sup>b</sup>     | 99.1                       |
| Ceftazidime-avibactam                       | 0.12              | 0.25              | 99.9                  | 99.9                       |
| CRE <sup>,c</sup> (n=68)                    |                   |                   |                       |                            |
| Cefiderocol                                 | 0.5               | 4                 | 98.5                  | 83.8                       |
| Meropenem                                   | 16                | >32               | 1.5                   | 14.7                       |
| Meropenem-vaborbactam                       | 0.12              | >8                | 79.4                  | 85.3                       |
| Imipenem-relebactam                         | 0.12              | 8                 | 77.9 <sup>b</sup>     | 80.9                       |
| Ceftazidime-avibactam                       | 1                 | 8                 | 91.2                  | 91.2                       |
| Meropenem-vaborbactam MIC >8<br>mg/L (n=10) |                   |                   |                       |                            |
| Cefiderocol                                 | 2                 | N/A               | 100.0                 | 80.0                       |
| Meropenem                                   | 32                | N/A               | 0.0                   | 0.0                        |
| Meropenem-vaborbactam                       | >8                | N/A               | 0.0                   | 0.0                        |
| Imipenem-relebactam                         | 8                 | N/A               | 0.0 <sup>b</sup>      | 0.0                        |
| Ceftazidime-avibactam                       | 2                 | N/A               | 60.0                  | 60.0                       |

| Antimicrobial agent                        | mg/L              |                   | CLSI/FDA <sup>a</sup> | <b>EUCAST</b> <sup>a</sup> |
|--------------------------------------------|-------------------|-------------------|-----------------------|----------------------------|
|                                            | MIC <sub>50</sub> | MIC <sub>90</sub> | %S                    | %S                         |
| Imipenem-relebactam MIC >2 mg/L<br>(n=72)  |                   |                   |                       |                            |
| Cefiderocol                                | 0.015             | 2                 | 100.0                 | 95.8                       |
| Meropenem                                  | 0.12              | 32                | 81.9                  | 81.9                       |
| Meropenem-vaborbactam                      | 0.12              | >8                | 83.3                  | 86.1                       |
| Imipenem-relebactam                        | 4                 | >8                | 0.0 <sup>b</sup>      | 0.0                        |
| Ceftazidime-avibactam                      | 0.06              | 2                 | 91.7                  | 91.7                       |
| Ceftazidime-avibactam MIC >8 mg/L<br>(n=8) |                   |                   |                       |                            |
| Cefiderocol                                | 2                 | N/A               | 87.5                  | 50.0                       |
| Meropenem                                  | 8                 | N/A               | 25.0                  | 25.0                       |
| Meropenem-vaborbactam                      | 8                 | N/A               | 25.0                  | 50.0                       |
| Imipenem-relebactam                        | 4                 | N/A               | 25.0 <sup>b</sup>     | 50.0                       |
| Ceftazidime-avibactam                      | >32               | N/A               | 0.0                   | 0.0                        |

<sup>a</sup> Criteria as published by CLSI/FDA, and EUCAST (2022).

<sup>b</sup> All Enterobacterales species were included in the analysis, but CLSI excludes *Morganella*, *Proteus*, and *Providencia* species while EUCAST excludes *Morganellaceae*.

<sup>c</sup> CRE: carbapenem-resistant Enterobacterales with meropenem and/or imipenem MIC values
≥4 mg/L. Organisms include: *Citrobacter freundii* complex (4), *Enterobacter cloacae* complex (9), *Escherichia coli* (3), *Hafnia alvei* (1), *Klebsiella aerogenes* (5), *K. oxytoca* (4), *K. pneumonia* (37), *Serratia marcescens* (3), and unspeciated *Raoultella* (2).



### **Results**

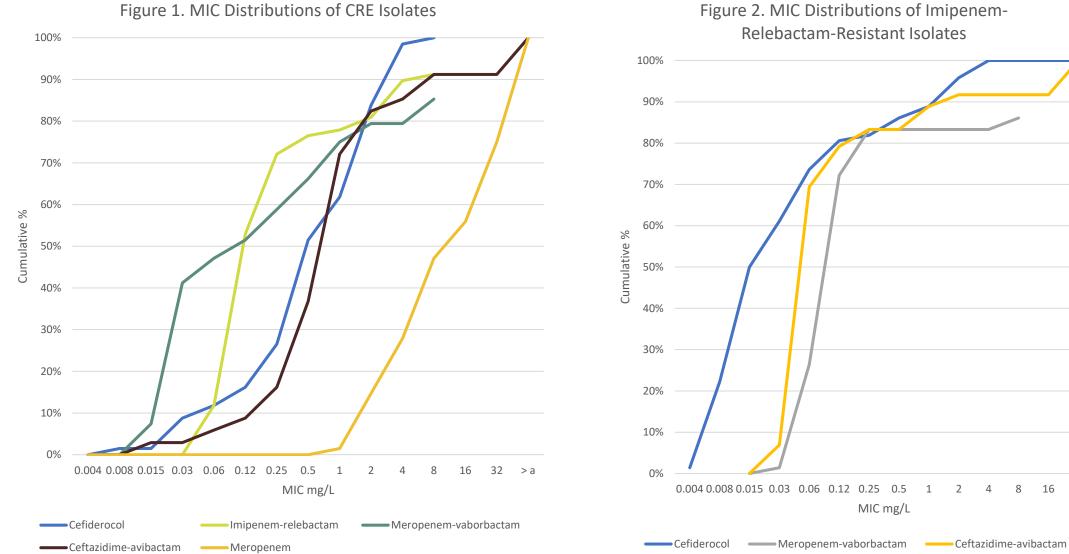



Figure 2. MIC Distributions of Imipenem-Relebactam-Resistant Isolates 0.004 0.008 0.015 0.03 0.06 0.12 0.25 0.5 16 >a 1 2 8 4 MIC mg/L

<sup>a</sup> >, MIC greater than highest concentration tested.

#### Results

- Most isolates were from urinary tract infections (*n*=2,796), followed by bloodstream (*n*=2,047) infections.
- The most common species was *Escherichia coli* (*n*=3,285) followed by *Klebsiella pneumoniae* (KPN, *n*=1,382).
- The susceptibilities of all tested agents were >94% against all isolates.
- CRE susceptibility to cefiderocol was 98.5/83.8% (CLSI/EUCAST).
- Cefiderocol was active against BL/BLIresistant isolates.

### Conclusions

- Cefiderocol had broad activity against US Enterobacterales isolates, including those resistant to approved BL/BLI combinations.
- These *in vitro* results suggest that cefiderocol is an important option for the treatment of infections caused by CRE and BL/BLIresistant pathogens that have limited treatment options.

## Acknowledgements

This study was sponsored by Shionogi & Co., LTD.

# Contact

Dee Shortridge, PhD dee-shortridge@jmilabs.com

