Antimicrobial Activity of Cefepime-Zidebactam (WCK 5222) against Clinical Isolates of Carbapenem-Resistant Enterobacterales Collected Worldwide in 2018

Helio S. Sader, Robert K. Flamm, Jennifer M. Streit, Timothy B. Doyle, **Mariana Castanheira**

JMI Laboratories, North Liberty, IA, USA

Introduction

- Zidebactam is a bicyclo-acyl hydrazide (C₁₃H₂₁N₅O₇S), a non-β-lactam agent with a dual mechanism of action: selective gram-negative penicillin-binding protein (PBP) 2 binding and β-lactamase inhibition
- Due to PBP2 binding, zidebactam demonstrates antibacterial activity against many Enterobacterales species
- Cefepime-zidebactam is in clinical development at 2g/1g q8 hours as a 60-minute infusion dosage
- We evaluated the in vitro activity of cefepimezidebactam against contemporary clinical isolates of carbapenem-resistant Enterobacterales (CRE)

Materials and Methods

- A total of 14,500 Enterobacterales isolates were collected by the SENTRY Antimicrobial Surveillance Program worldwide from January 2018 to October 2018 and 200 (1.4%) were categorized as CRE
- CRE was defined as resistant per EUCAST criteria to meropenem, imipenem, or doripenem (imipenem was not applied to Proteus mirabilis or indolepositive Proteeae)
- CRE isolates were from 54 medical centres in 14 countries located in Europe (n=81), the United States (n=63), Latin America (n=40), and the Asia-Pacific region (APAC; n=16; Figure 1)
- Susceptibility testing was performed in a central laboratory by a reference broth microdilution method against cefepime-zidebactam (1:1 ratio) and comparators
- Cefepime susceptible breakpoint of ≤8mg/L (CLSI, high dose) was applied for cefepime-zidebactam for comparison purposes only
- EUCAST breakpoints were applied for comparators, when available
- β-lactamase screening was performed by whole genome sequencing

Acknowledgements

This study was supported by Wockhardt Bio Ag.

Results

- The most common CRE species were Klebsiella pneumoniae (74.0%), Enterobacter cloacae (11.5%), and Serratia marcescens (5.0%; Figure 2).
- Isolates were from bloodstream infections (30.5%), pneumonia (25.0%), urinary tract infections (18.5%), intra-abdominal infections (12.5%), skin and skin structure infections (10.5%), and other infection types (3.0%; Figure 3)
- Cefepime-zidebactam was the most active agent with $MIC_{50/90}$ values of 0.5/2 mg/L and the highest MIC value of 8 mg/L in all geographic regions (Table 1)
- The most active comparator agents were ceftazidimeavibactam (MIC_{50/90}, 1/>32 mg/L; 76.5%S), colistin $(MIC_{50/90}, 0.25/>8 \text{ mg/L}; 74.5%S)$, and amikacin $(MIC_{50/90}, 8/>32 \text{ mg/L}; 56.5\%S; Table 1)$
- Susceptibility to ceftazidime-avibactam ranged from 0.0% in APAC, 72.5% in Latin America, 82.7% in Europe, and 90.5% in the United States (Table 1)
- A serine carbapenemase was identified in 136 (68.0%) isolates, and 86.0% of these isolates produced KPC-2 or KPC-3 (Figure 1)
- A metallo-β-lactamase (MBL) was observed in 47 (23.5%) isolates, and NDM-type represented 85.1% of the MBLs (Figure 1)
- Cefepime-zidebactam was highly active in vitro against MBL- (MIC_{50/90}, 0.25/1 mg/L) and serine carbapenemase-producing (MIC_{50/90}, 0.5/2 mg/L) isolates, inhibiting all isolates at ≤8 mg/L (Figure 4)

Conclusions

- Cefepime-zidebactam demonstrated potent in vitro activity against contemporary (2018) CRE isolates collected worldwide.
- Cefepime-zidebactam demonstrated consistent activity against CRE strains resistant to ceftazidime-avibactam, colistin, and amikacin.
- The most common carbapenemases found among CRE isolates worldwide were KPC-2/3 (58.5% of CREs) and NDM-type (20.0% of CREs)
- Antimicrobial agents currently available for clinical use exhibited limited activity against CRE, emphasizing the urgent need for novel agents to treat infections caused by these multidrug-resistant organisms

Table 1 Activity of cefepime-zidebactam and comparator agents tested against carbapenemresistant Enterobacterales (CRE) collected in 2018 and stratified by geographic region

Antimicrobial agent	MIC ₅₀	MIC ₉₀	% susceptible per EUCAST (no. of isolates)				
			Europe (81)	USA (63)	LATAM (40)	APAC (16)	All (200)
Cefepime-zidebactam	0.5	2	[100.0] ^a	[100.0] ^a	[100.0] ^a	[100.0] ^a	[100.0] ^a
Ceftazidime-avibactam	1	>32	82.7	90.5	72.5	0.0	76.5
Ceftolozane-tazobactam	>16	>16	0.0	1.6	0.0	0.0	0.5
Cefoperazone-sulbactam	>32	>32	0.0 ^b	4.8 ^b	0.0 ^b	0.0 ^b	1.5 ^b
Amikacin	8	>32	50.6	65.1	47.5	75.0	56.5
Gentamicin	8	>16	43.2	44.4	32.5	43.8	41.5
Levofloxacin	32	>32	9.9	19.0	22.5	18.8	16.0
Tigecycline	1	2	29.6°	49.5°	52.5°	50.0°	42.0°
Colistin	0.25	>8	69.1	74.6	77.5	93.8	74.5

USA, United States; LATAM, Latin America; APAC, Asia-Pacific region ^a Percentage inhibited at ≤ 8 mg/L in brackets for comparison purpose.

Contact

Helio S. Sader, MD, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371

Email: helio-sader@jmilabs.com

To obtain a PDF of this poster:

Scan the QR code or visit https://www .jmilabs.com/data/posters/ASM-ESC MID2019-cefepime-zidebactam-CRE.pdf

Charges may apply. No personal information is stored.

Figure 1 Distribution of carbapenem-resistant Enterobacterales and occurrence of serine carbapenemases and metallo-β-lactamases stratified by geographic region

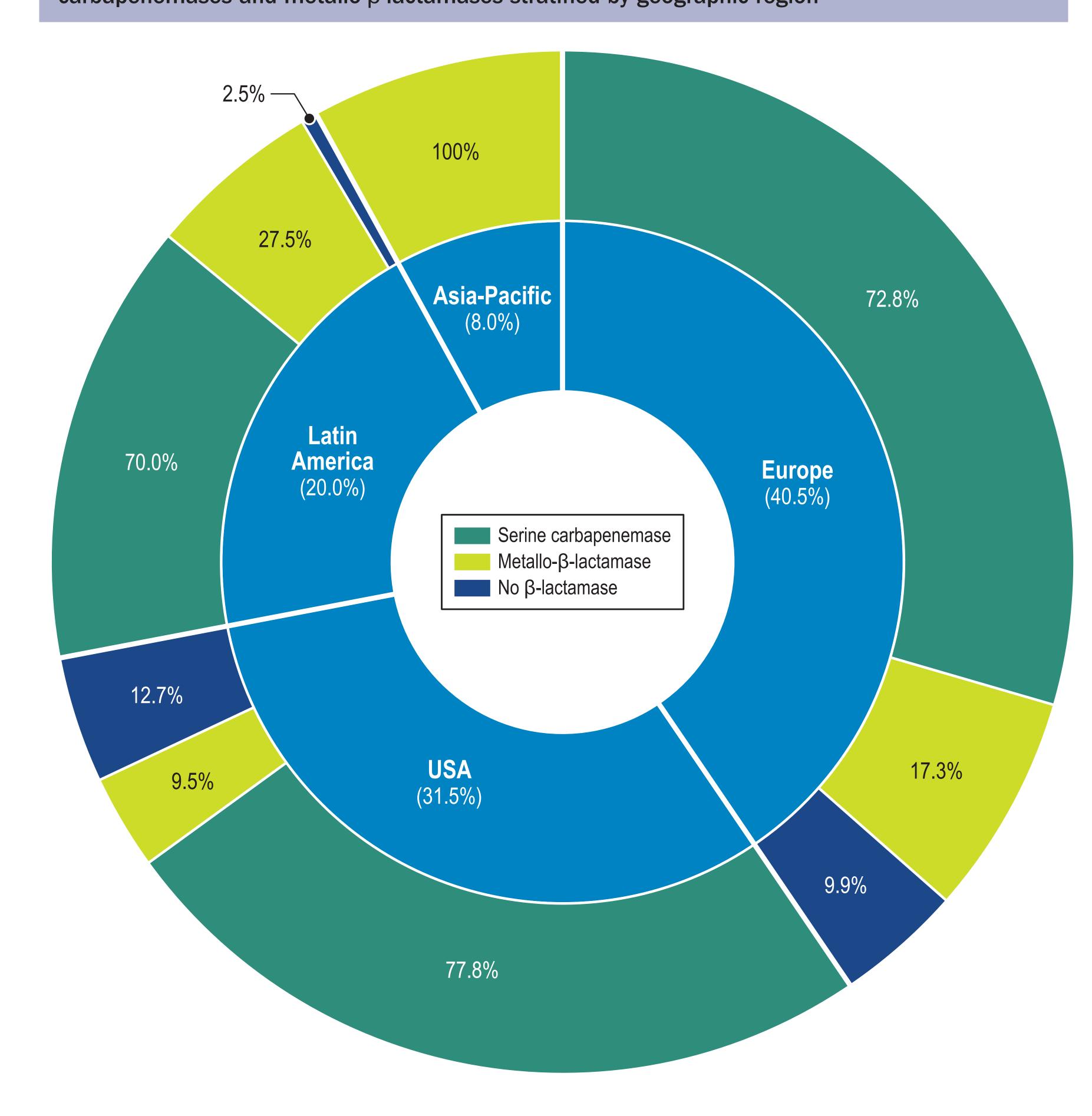


Figure 2 Distribution of carbapenem-resistant Enterobacterales isolates by species

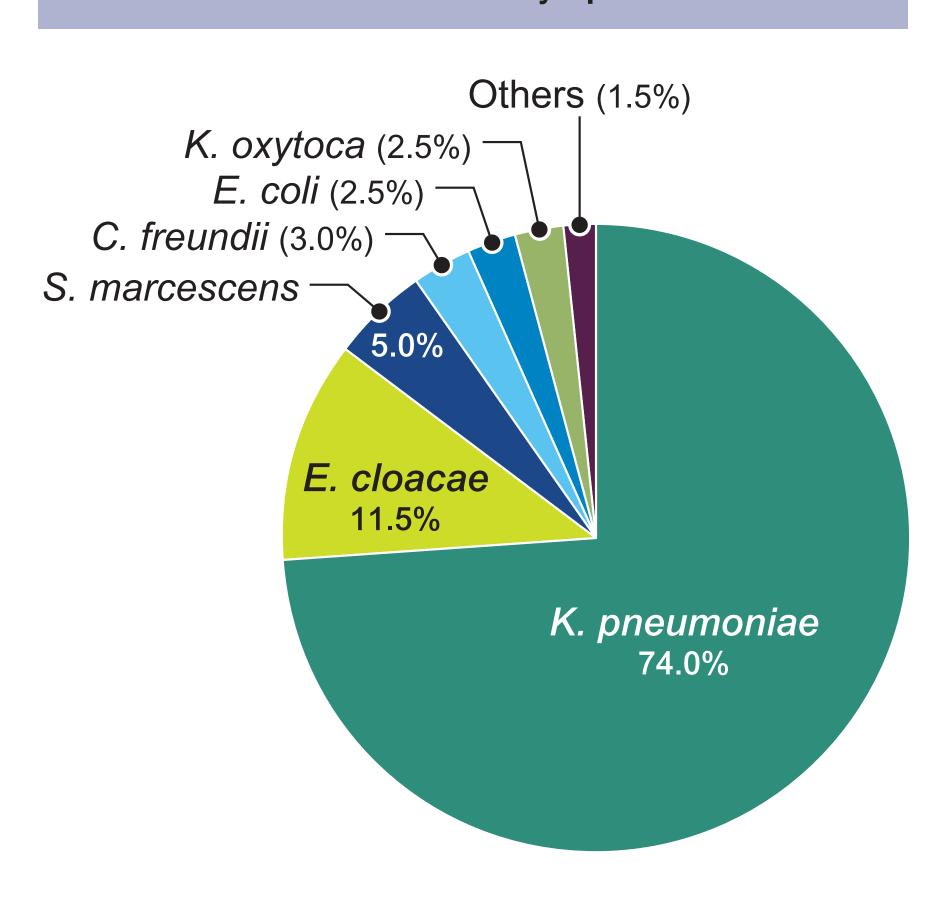


Figure 3 Distribution of carbapenem-resistant Enterobacterales isolates by infection type

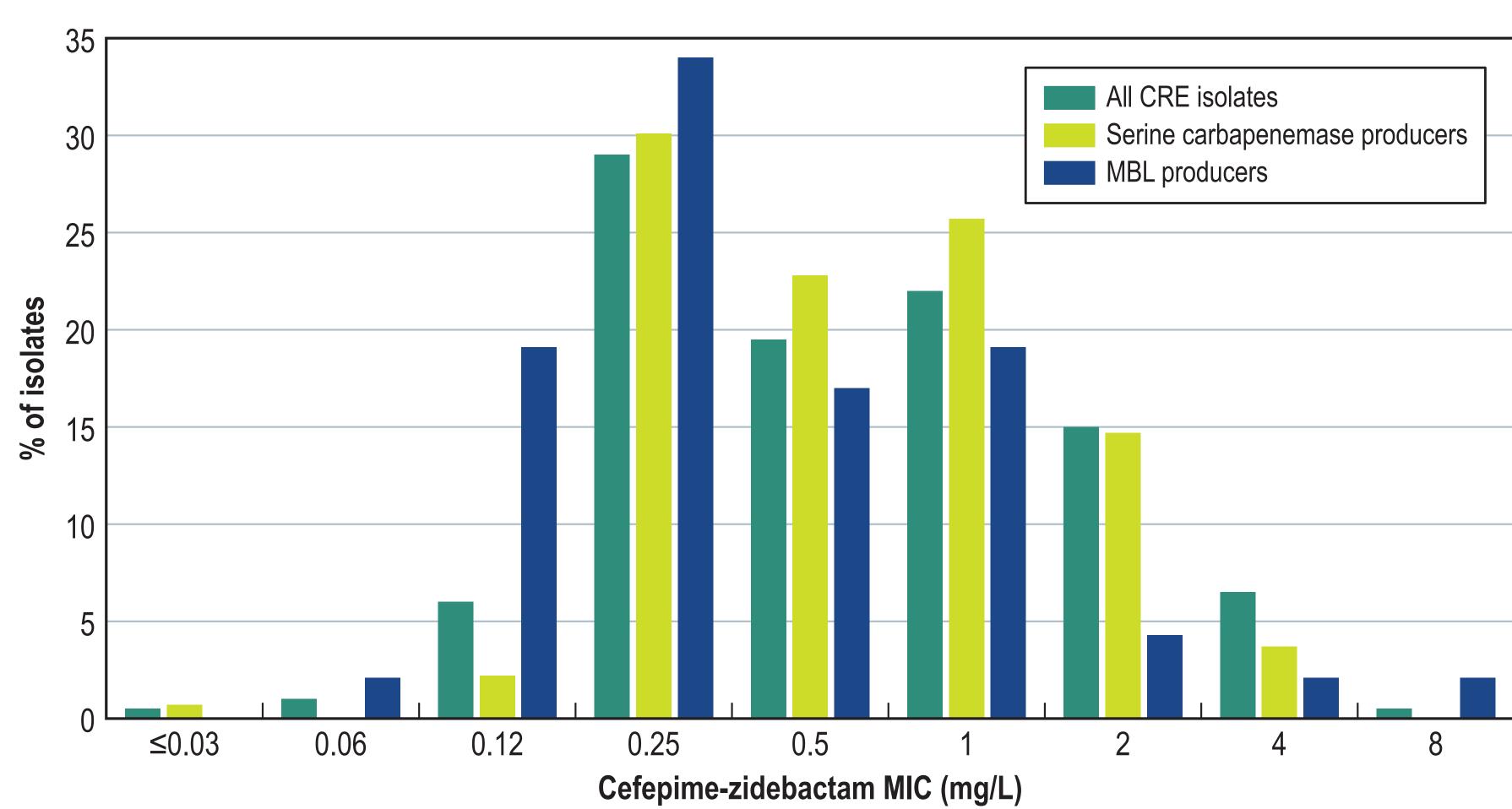



Figure 4 Antimicrobial activity of cefepime-zidebactam against serine carbapenemase- and metallo-β-lactamase-producing isolates

CRE, carbapenem-resistant *Enterobacterales*; MBL, metallo-β-lactamase

b Criteria as published in the Sulperazone Package Insert. ^c EUCAST susceptible breakpoint of ≤0.5 mg/L has been established for *E. coli* and *C. koseri* only but has been applied for all CRE isolates.