ASM Microbe 2018 Sunday-577

Antimicrobial Activity of GT-1, a Novel Siderophore Cephalosporin, Tested against Multidrug-Resistant *Pseudomonas aeruginosa* and *Acinetobacter* spp. Isolates LR DUNCAN¹, PR RHOMBERG¹, D BIEK³, YL CHO², RK FLAMM¹, HS SADER¹ ¹JMI Laboratories, North Liberty, Iowa, USA; ²Legochem Biosciences, Daejeon, South Korea; ³Geom Therapeutics, San Francisco, California, USA

Introduction

- New strategies are required to successfully treat multidrug-resistant gramnegative pathogens
- The antimicrobial Trojan horse strategy
- Siderophores are small molecules that are secreted by bacteria and bind extracellular iron
- The resulting siderophore-Fe³⁺ complexes are then taken up by bacterial cells that use specific transport mechanisms
- Synthetic antimicrobial-siderophore conjugates can also be transported into bacterial cells by the same iron uptake systems
- This process allows efficient delivery of antimicrobials into cells of gramnegative species that possess less permeable outer membranes
- GT-1 (previously LCB10-0200) is a novel siderophore cephalosporin (Figure 1) with broad-spectrum activity against gram-negative bacteria
- This study reports on the *in vitro* antimicrobial activity of GT-1 against sets of Pseudomonas aeruginosa and Acinetobacter spp. clinical isolates with specific resistance phenotypes or genotypes

Materials and Methods

Organism collection

- Pseudomonas aeruginosa and Acinetobacter spp. isolates were collected from 110 medical centers in 34 countries
- *P. aeruginosa* (108 isolates)
- Wild-type isolates (susceptible to ceftazidime-avibactam and meropenem; 22 isolates)
- Class A β-lactamase-producing isolates (6 isolates, including *Klebsiella* pneumoniae carbapenemase [KPC; 3] and Guiana extended-spectrum [GES; 3] producers)
- Metallo-β-lactamase-producing isolates (MBLs; 36 isolates; see Figure 2 for specific enzyme subclasses tested)
- Colistin-resistant isolates (10 isolates)
- Isolates with OprD porin loss (34 isolates)

Figure 1. Structure of GT-1

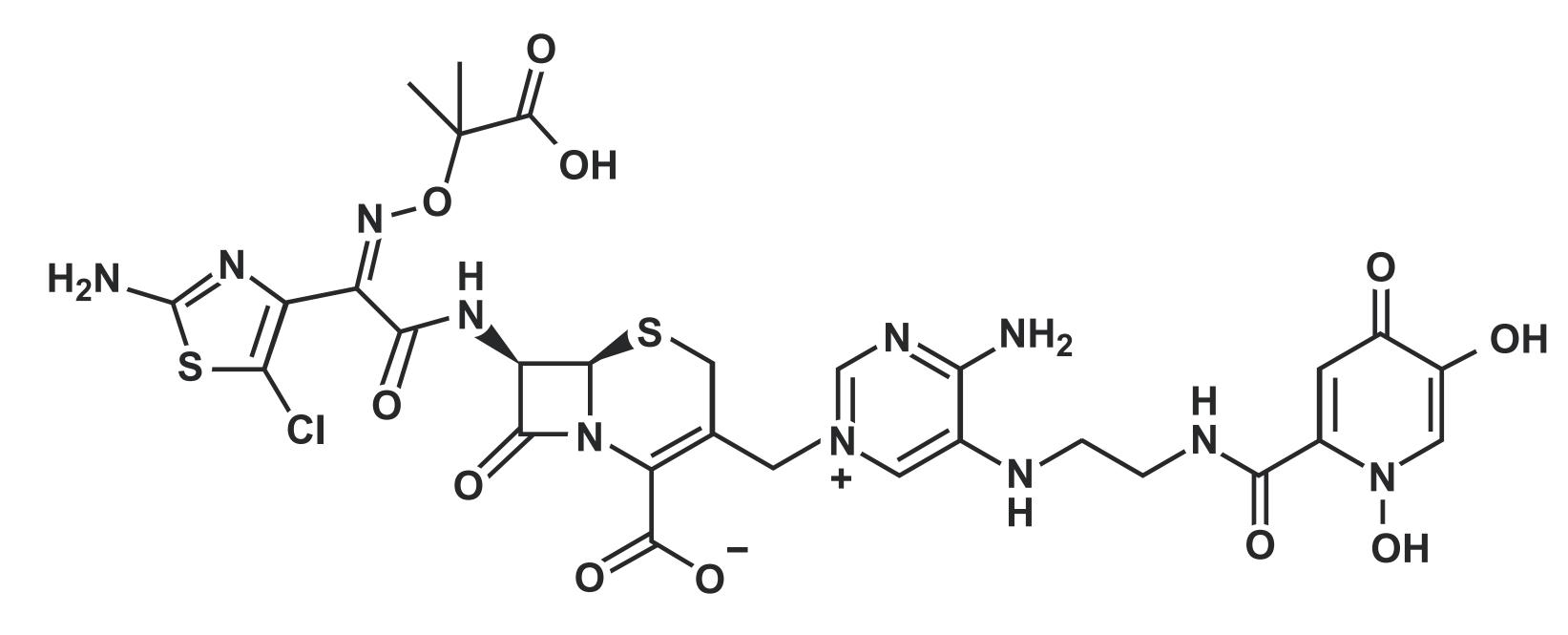
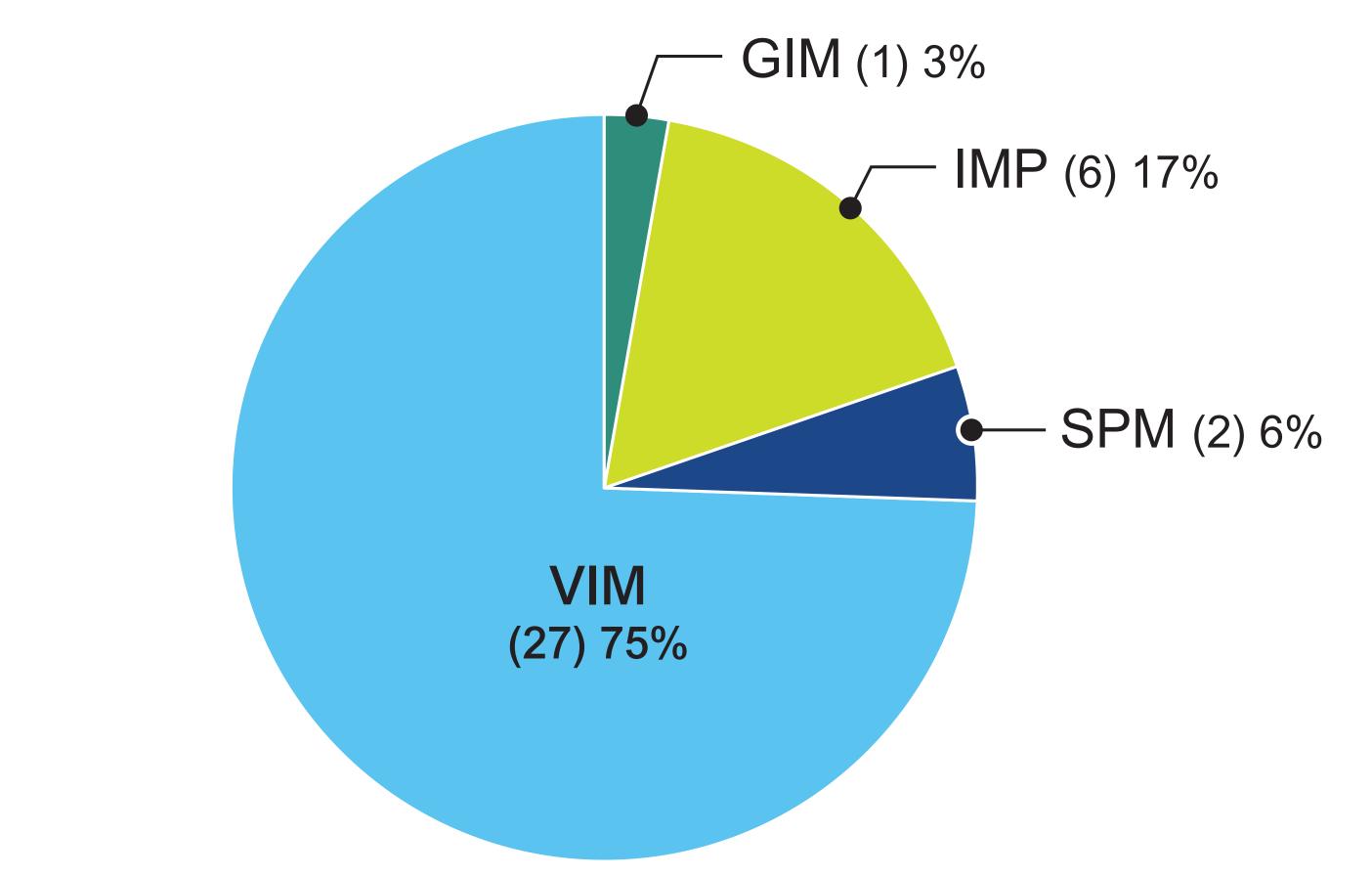



Figure 2. Carbapenemases produced by the *Pseudomonas aeruginosa* metallo-βlactamase subset isolates (n = 36)

- Acinetobacter spp. (99 isolates) included: Acinetobacter baumanniicalcoaceticus species complex (95), Acinetobacter berezinae (1), Acinetobacter haemolyticus (1), Acinetobacter Iwoffii (1), and unspeciated Acinetobacter (1)
- Wild-type isolates (susceptible to ceftazidime and meropenem; 18 isolates)
- Ceftazidime-resistant and meropenem-susceptible isolates (9 isolates)
- Meropenem-resistant isolates (51 isolates)
- Colistin-resistant isolates (21 isolates)
- Where indicated, the presence of specific β -lactamase genes was confirmed by PCR analysis or whole genome sequencing

Susceptibility testing

- Unless otherwise indicated, susceptibility testing followed current CLSI guidelines and interpretive criteria, where applicable
- Bacterial inoculum densities were monitored by colony counts
- MIC values were validated by concurrently tested CLSI-recommended quality control reference strains (Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853)
- Isolates were tested against GT-1 by the broth microdilution method using iron-depleted (ID) cation-adjusted Mueller-Hinton broth (CAMHB) ID-CAMHB was produced using Chelex[®] resin
- Comparators (including ceftazidime-avibactam, ceftolozane-tazobactam, colistin, levofloxacin, meropenem, sulbactam, and tigecycline) were tested in CAMHE
- Because some isolates (particularly Acinetobacter spp.) exhibited a "trailing inhibition of growth" phenotype in the presence of GT-1 (a known property of siderophore cephalosporins), GT-1 MIC values were read as the lowest concentration of compound that exhibited a significant reduction in growth relative to the growth control
- This criterion was based on the alternative MIC methodology presented by Shionogi & Co. in January 2016 to the CLSI Methods Development and Standardization Working Group concerning their siderophore cephalosporin

GIM. German imipenemase: IMP. imipenemase: SPM. São Paulo metallo-B-lactamase; VIM, Verona integron-encoded metallo-B-lactamase

Results

- GT-1 exhibited potent antimicrobial activity against each of the P. aeruginosa isolate subsets (Table 1)
- GT-1 was the most potent antimicrobial tested against the wild-type isolate subset (MIC_{50/90}, 0.12/0.5 µg/mL; Table 2)
- As shown in Table 2, GT-1 maintained excellent potency against carbapenem-resistant isolates that produced class A enzymes (KPC or GES; MIC₅₀, 0.5 μ g/mL) or MBL enzymes (MIC_{50/90}, 1/4 μ g/mL) and that were largely resistant to other tested antimicrobials except colistin
- GT-1 also exhibited potent activity against a set of phenotypically colistinresistant isolates with poor susceptibilities to other tested antimicrobials (Table 2; MIC_{50/90}, 0.25/1 µg/mL)
- GT-1 was similarly active against a large set of meropenem-nonsusceptible isolates containing *oprD* mutations (Table 2, MIC_{50/90}, 0.25/0.5 µg/mL)
- GT-1 also displayed good antimicrobial activity against most Acinetobacter spp. isolates (Table 1)
- GT-1 was among the most potent antimicrobials tested against the wildtype isolate subset (MIC_{50/90}, 0.25/1 µg/mL; Table 3)
- resistant/colistin-susceptible, and colistin-resistant isolate subsets, the GT-1 MIC_{50} values were 2 µg/mL; however, the MIC_{00} values were >64 µg/mL, which reflects the presence of a small number of resistant isolates (Table 1)
- Against the ceftazidime-resistant/meropenem-susceptible, meropenem-- By MIC₅₀ value, GT-1 and tigecycline were the most potent agents tested against the colistin-resistant isolate subset (Table 3)

Table 1. GT-1 MIC values for isolates tested in ID-CAMHB

Organism/organism	No. of isolates at MIC (µg/mL; cumulative %)													
group (no. of isolates)	≤0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	> a		MIC ₉₀
Acinetobacter spp. (99)	5 5.1	10 15.2	16 31.3	20 51.5	6 57.6	11 68.7	5 73.7	0 73.7	1 74.7	0 74.7	0 74.7	25 100.0	0.5	>64
Wild type (18)	3 16.7	4 38.9	5 66.7	4 88.9	2 100.0								0.25	1
Ceftazidime-resistant/ meropenem- susceptible (9)	0 0.0	2 22.2	2 44.4	0 44.4	0 44.4	1 55.6	0 55.6	0 55.6	0 55.6	0 55.6	0 55.6	4 100.0	2	
Meropenem-resistant (51)	1 2.0	3 7.8	4 15.7	14 43.1	3 49.0	4 56.9	4 64.7	0 64.7	0 64.7	0 64.7	0 64.7	18 100.0	2	>64
Colistin-resistant (21)	1 4.8	1 9.5	5 33.3	2 42.9	1 47.6	6 76.2	1 81.0	0 81.0	1 85.7	0 85.7	0 85.7	3 100.0	2	>64
Pseudomonas aeruginosa (108)	8 7.4	12 18.5	28 44.4	23 65.7	19 83.3	12 94.4	3 97.2	2 99.1	0 99.1	0 99.1	0 99.1	1 100.0	0.5	2
Wild type (22)	7 31.8	5 54.5	6 81.8	3 95.5	1 100.0								0.12	0.5
Class A β-lactamase producer (6)		0 0.0	2 33.3	1 50.0	2 83.3	1 100.0							0.5	
Metallo-β-lactamase producer (36)			0 0.0	5 13.9	15 55.6	11 86.1	2 91.7	2 97.2	0 97.2	0 97.2	0 97.2	1 100.0	1	4
OprD loss (34)	0 0.0	5 14.7	17 64.7	12 100.0									0.25	0.5
Colistin-resistant (10)	1 10.0	2 30.0	3 60.0	2 80.0	1 90.0	0 90.0	1 100.0						0.25	1

^a Greater than the highest concentration tested.

Table 2. Activity of GT-1 and comparator agents tested against phenotypically and genotypically characterized *Pseudomonas aeruginosa* clinical isolates

Organism group/	Antibac	terial activi	ty (µg/mL)		CLSI ^a		Organism group/	Antiba	cterial activity	y (µg/mL)	CLSI ^a		
antimicrobial agent	MIC ₅₀ MIC ₉₀		Range	%S	%	%R	antimicrobial agent	MIC ₅₀	MIC ₉₀	Range	%S	%	%R
Nild type (22)		30					Wild type (18)						
GT-1 (ID-CAMHB)	0.12	0.5	≤0.06 — 1				GT-1 (ID-CAMHB)	0.25	1	≤0.06 — 1			
Ceftazidime-avibactam	2	2	0.5 — 4	100.0		0.0	Ceftazidime-avibactam	8	16	4 — 16			
Ceftolozane-tazobactam	0.5	1	0.25 — 1	100.0	0.0	0.0	Colistin	0.5	2	≤0.25 — 2	100.0		0.0
Colistin	1	1	0.5 — 2	100.0		0.0	Levofloxacin	0.12	4	0.06 >4	88.9	5.6	5.6
Levofloxacin	0.5	2	0.06 >4	90.9	0.0	9.1	Meropenem	0.5	1	0.25 — 1	100.0	0.0	0.0
Meropenem	0.5	2	≤0.06 — 2	100.0	0.0	0.0	Sulbactam	1	2	0.5 — 16			
Class A β-lactamase producers (6)							Tigecycline	0.25	0.5	≤0.12 — 1			
GT-1 (ID-CAMHB)	0.5		0.25 — 2				Ceftazidime-resistant/me	eropenem-su	sceptible (9)				
Ceftazidime-avibactam	4		4 — 16	66.7		33.3	GT-1 (ID-CAMHB)	2		0.12 ->64			
Ceftolozane-tazobactam	64		16 — >64	0.0	0.0	100.0	Ceftazidime-avibactam	32		16 >64	400.0		
Colistin	1		1 — 1	100.0		0.0	Colistin	0.5		0.5 — 1	100.0	0.0	0.0
Levofloxacin	>4		>4 >4	0.0	0.0	100.0	Levofloxacin	>4		2 >4	11.1	0.0	88.9
Meropenem	64		16 — >64	0.0	0.0	100.0	Meropenem Sulbactam	16		1 — 2 4 — >32	100.0	0.0	0.0
Metallo-β-lactamase producers (36)							Tigecycline	10		0.25 - 2			
GT-1 (ID-CAMHB)	1	4	0.5 — >64				Meropenem-resistant (51) 		0.25 - 2			
Ceftazidime-avibactam	64	>64	4 >64	2.8		97.2	GT-1 (ID-CAMHB)	2	>64	≤0.06 — >64			
Ceftolozane-tazobactam	>64	>64	1 >64	2.8	0.0	97.2	Ceftazidime-avibactam	32	>64	8 >64			
Colistin	1	2	0.5 — 2	100.0		0.0	Colistin	0.5	1	≤0.25 — 2	100.0		0.0
Levofloxacin	>4	>4	0.5 -> 4	8.3	0.0	91.7	Levofloxacin	>4	>4	0.5 >4	2.0	2.0	96.1
Meropenem	>64	>64	8 >64	0.0	0.0	100.0	Meropenem	>64	>64	8 >64	0.0	0.0	100.0
Colistin-resistant (10)				0.0			Sulbactam	32	>32	4 >32			
GT-1 (ID-CAMHB)	0.25	1	≤0.06 — 4				Tigecycline	1	2	0.12 — 4			
Ceftazidime-avibactam	4	16	0.5 ->64	80.0		20.0	Colistin-resistant (21)						
Ceftolozane-tazobactam	1	32	0.5 ->64	80.0	0.0	20.0	GT-1 (ID-CAMHB)	2	>64	≤0.06 — >64			
Colistin	8	>8	4 >8	0.0		100.0	Ceftazidime-avibactam	64	>64	2 — >64			
Levofloxacin	>4	>4	1 >4	10.0	20.0	70.0	Colistin	>8	>8	4 >8	0.0		100.0
Meropenem	<u></u>	32	0.12 - 64	30.0	20.0	50.0	Levofloxacin	>4	>4	0.06 >4	19.0	0.0	81.0
OprD loss (34)	-		0.12 04	00.0	20.0	00.0	Meropenem	64	>64	0.25 >64	23.8	0.0	76.2
GT-1 (ID-CAMHB)	0.25	0.5	0.12 - 0.5				Sulbactam	16	>32	0.5 — >32			
Ceftazidime-avibactam	0.23	16	2 — 32	82.4		17.6	Tigecycline	2	4	0.12 — 4			
Ceftolozane-tazobactam	4	10	0.5 — 8	91.2	8.8	0.0	^a Criteria as published by CLSI 2018.						
	1	4			0.0								
Colistin		2	≤0.25 — 2	100.0	17.0	0.0							
Levofloxacin	4	>4	0.5 ->4	32.4	17.6	50.0							
Meropenem Criteria as published by CLSI 2018.	16	32	4 — 64	0.0	2.9	97.1				edgen		S	

^a Criteria as published by CLSI 201

Conclusions

- GT-1 exhibited potent in vitro activity against a diverse global collection of multidrug-resistant *P. aeruginosa* and *Acinetobacter* spp. isolates
- Importantly, GT-1 maintained good activity against P. aeruginosa isolates that were carbapenem-resistant due to the expression of class A enzymes, class B enzymes, and/or the presence of oprD mutations
- An accompanying poster (Sunday-571) presents corresponding positive in vitro results for GT-1 tested against resistant Enterobacteriaceae isolates
- These results support the further clinical development of the novel siderophore cephalosporin GT-1

Contact Information: Leonard R. Duncan, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: leonard-duncan@jmilabs.com

To obtain a PDF of this poster: Scan the QR code

Visit https://www.jmilabs.com/data/posters/ASM -Microbe-2018-GT1-Pseudomonas-Acinetobacter.pdf

Charges may apply. No personal information is stored.

Table 3. Activity of GT-1 and comparator agents tested against phenotypically and genotypically characterized *Acinetobacter* spp. clinical isolates

This study was sponsored by Legochem Biosciences (Daejeon, South Korea).

References

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

Oh SH, Park HS, Kim HS, Yun JY, Oh K, Cho YL, Kwak JH (2017). Antimicrobial activities of LCB10-0200, a novel siderophore cephalosporin, against the clinical isolates of *Pseudomonas aeruginosa* and other pathogens. *Int J Antimicrob* Agents 50:700-706.