ASM Microbe 2018 Sunday-404

Global Trends in Prevalence and Diversity of Carbapenemases Carrying *Enterobacteriaceae* Identified through SENTRY Antimicrobial Surveillance Program

LM Deshpande, RE Mendes, CJ Smith, M Castanheira

JMI Laboratories, North Liberty, Iowa, USA

Contact Information:
Mariana Castanheira, PhD
JMI Laboratories
345 Beaver Kreek Centre, Suite A
North Liberty, IA 52317
Phone: (319) 665-3370
Fax: (319) 665-3371
Email: mariana-castanheira@jmilabs.com

To obtain a PDF of this poster:Scan the QR code

OR

• Visit https://www.jmilabs.com/data/posters
/ASM-Microbe-2018-SENTRY

-carbapenemases.pdf
Charges may apply.

Introduction

- Carbapenem-nonsusceptible (NS) Enterobacteriaceae (ENT) pose a major challenge to treating serious infections caused by these organisms
- These pathogens are often multidrug resistant, making treatment options limited
- NS ENT rates vary widely according to geography
- IMP- (first identified in Serratia marcescens in Japan, 1994) and VIM- (first identified in Pseudomonas aeruginosa in Italy, 1999) metallo-beta-lactamases were the first carbapenemases to be described in human pathogens
- These carbapenemases have been replaced largely by KPC and NDM carbapenemases worldwide among NS ENT
- OXA-48-like carbapenemases are endemic in some regions of Asia and Europe and appear sporadically in other parts of the world
- We analyzed the diversity, prevalence, and evolution of carbapenemase genes among *Enterobacteriaceae* isolates collected through the longitudinal SENTRY Antimicrobial Surveillance Program from 1997 to 2016

Materials and Methods

- Among 112,979 Enterobacteriaceae isolates collected between 1997–2016,
 2,877 isolates (2.5%) displayed NS ENT phenotype (imipenem MIC at ≥2 mg/L or meropenem MIC at ≥1 mg/L) and were further evaluated
- These isolates originated from >200 medical centers in 40 countries worldwide
- Isolates were tested for susceptibility by contemporary CLSI broth microdilution methods and MIC interpretations used current CLSI and EUCAST criteria, as available
- Isolates were screened for carbapenemases by PCR followed by Sanger sequencing or whole genome sequencing and analysis
- Screening from 1997–2014 was done by multiplex PCR for carbapenemaseencoding genes followed by confirmation with singleplex PCR and sequencing of amplicons
- Since 2015, screening has been performed by whole genome sequencing of high-quality genomic DNA on the MiSeq (Illumina, San Diego, California, USA) platform
- NS ENT isolates were submitted to whole genome sequencing on a MiSeq instrument targeting a 30X coverage
- Sequences were de novo assembled (SPAdes 3.9.0) and queried for the presence of acquired carbapenemases using a curated library and applying criteria of >94% sequencing identity and 40% minimum length coverage
- Prevalence of carbapenemases among NS ENT isolates from 2007–09 and 2014–16 were compared
- These time periods were chosen as the molecular data were more robust and were temporally separated enough to document changes in trends

Results

- Global prevalence of NS ENT isolates increased from 1.5% in 2007–09 to 2.7% in 2014–16 (p=0.09)
- Among 23,078 isolates submitted during 2007-09, 349 (1.5%) were NS ENT with the majority from bloodstream infections (BSIs; 65.3%)
- Among 40,514 isolates submitted during 2014–16, 1,104 (2.7%) were NS ENT, most commonly recovered from pneumonia in hospitalized patients (32%) followed by BSIs (27%)
- Klebsiella pneumoniae (81.1%) was the most abundant NS ENT species, followed by Enterobacter cloacae (10.7%) and Escherichia coli (4.7%)
- Citrobacter freundii and Klebsiella oxytoca isolates were <2% overall per species
- Prevalence of *K. pneumoniae* among NS ENT increased from 77.4% in 2007–09 to 84.4% in 2014–16
- A corresponding decrease in the prevalence of *Enterobacter cloacae* species complex was from 12.6% to 8.7% in the 2 time periods evaluated
- *K. oxytoca* occurrence dropped from 3.1% to just 1.8%
- Overall, tigecycline was the only agent that was highly active (>98% S) against this set of isolates; amikacin (56.8% susceptible) and tetracycline (54.9% susceptible) had moderate activity
- 79.4% of isolates were susceptible to colistin per EUCAST criteria; colistin susceptibility dropped from 84.0% in 2007–09 to just 75.0% in 2014–16 isolates (Figure 1)
- The most common carbapenemase was *bla_{KPC}* (Figure 2)
- bla_{KPC} was detected in 71.2% of all carbapenemase-producing isolates in 2007–09 and in 64.5% of isolates in 2014–16
- *K. pneumoniae* was the predominant species with 86.8% of all *bla*_{KPC} carriers in these time frames
- bla_{KPC} was the only carbapenemase determinant detected in North America in 2007-09 (140 of 149 NS ENT isolates; 94%)
- Prevalence of KPC-producing isolates increased in Europe and Latin America during 2014–16 (33.3% in 2007–09 to 46.5% in 2014–16 in Europe and 24.0% in 2007–09 to 73.5% in 2014–16 in Latin America)
- Only 10 isolates (2.9% overall, all from medical centers in India) carried bla_{NDM-1} during 2007–09, and incidence of bla_{NDM}-positive isolates increased to 127 (11.5%; p<0.0001) in 2014–16 and were detected on all continents (Figure 2)
- All $bla_{\rm NDM-1}$ -positive isolates from 2007–09 were also positive for $bla_{\rm CTX-M-15}$, but no other carbapenemase
- bla_{NDM-1} and bla_{OXA-48} -like genes were detected together in 15 isolates in 2014–16
- bla_{NDM-1} and bla_{KPC} were detected in 2 K. pneumoniae isolates from 2015, 1 each from the United States (bla_{NDM-1} and bla_{KPC-17}) and Brazil (bla_{NDM-1} and bla_{KPC-2})
- $bla_{\rm NDM-1}$, $bla_{\rm KPC-3}$, and $bla_{\rm OXA-48}$ -like genes were detected in one isolate from Turkey in 2015
- Prevalence of isolates harboring bla_{VIM} and bla_{IMP} declined over the time periods, except in North America; bla_{OXA-48} genes were most prevalent in Europe (Figure 2)

Figure 1 Comparative activity of antimicrobial agents when tested against carbapenem nonsusceptible isolates in the SENTRY Program (2007–09 and 2014–16)

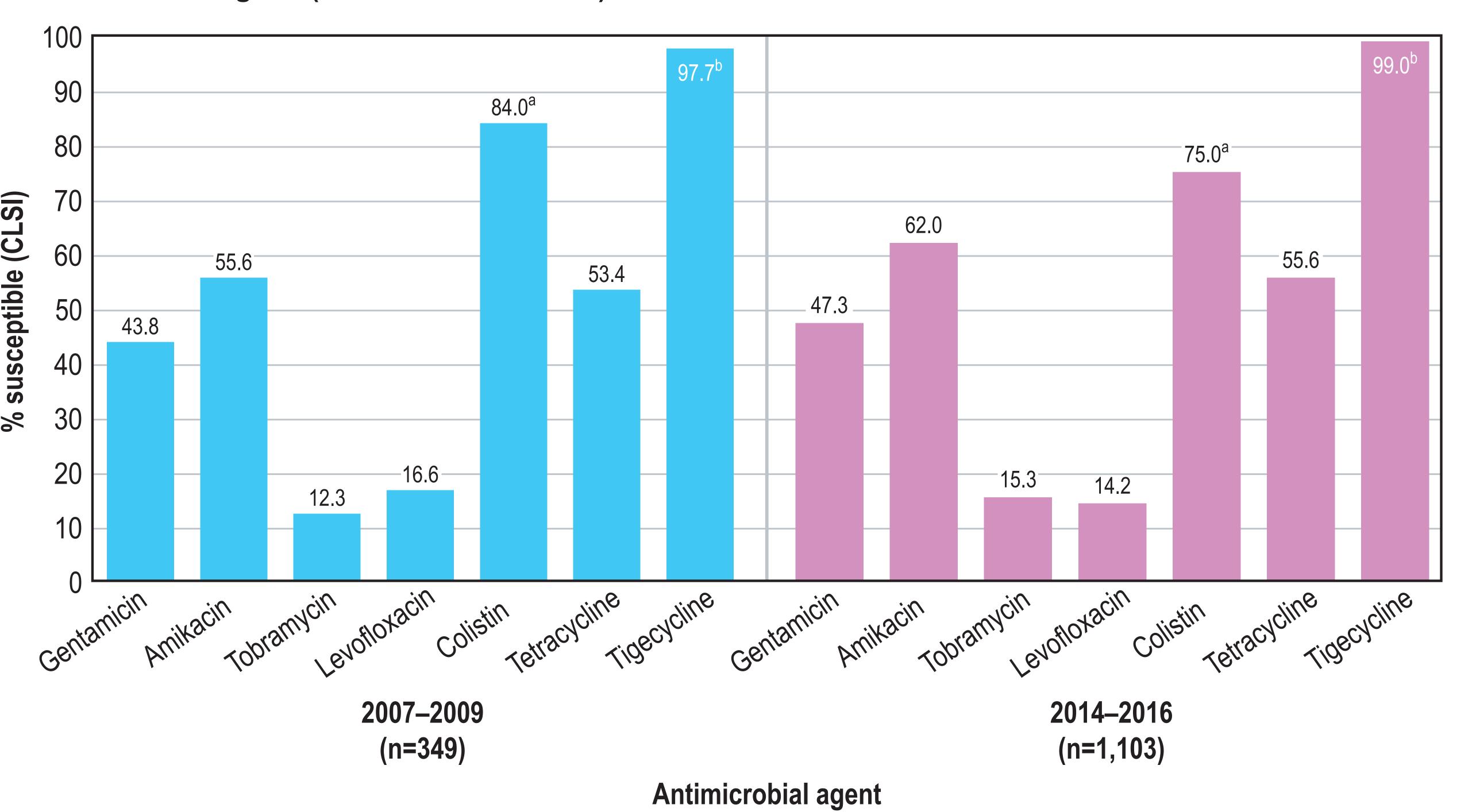
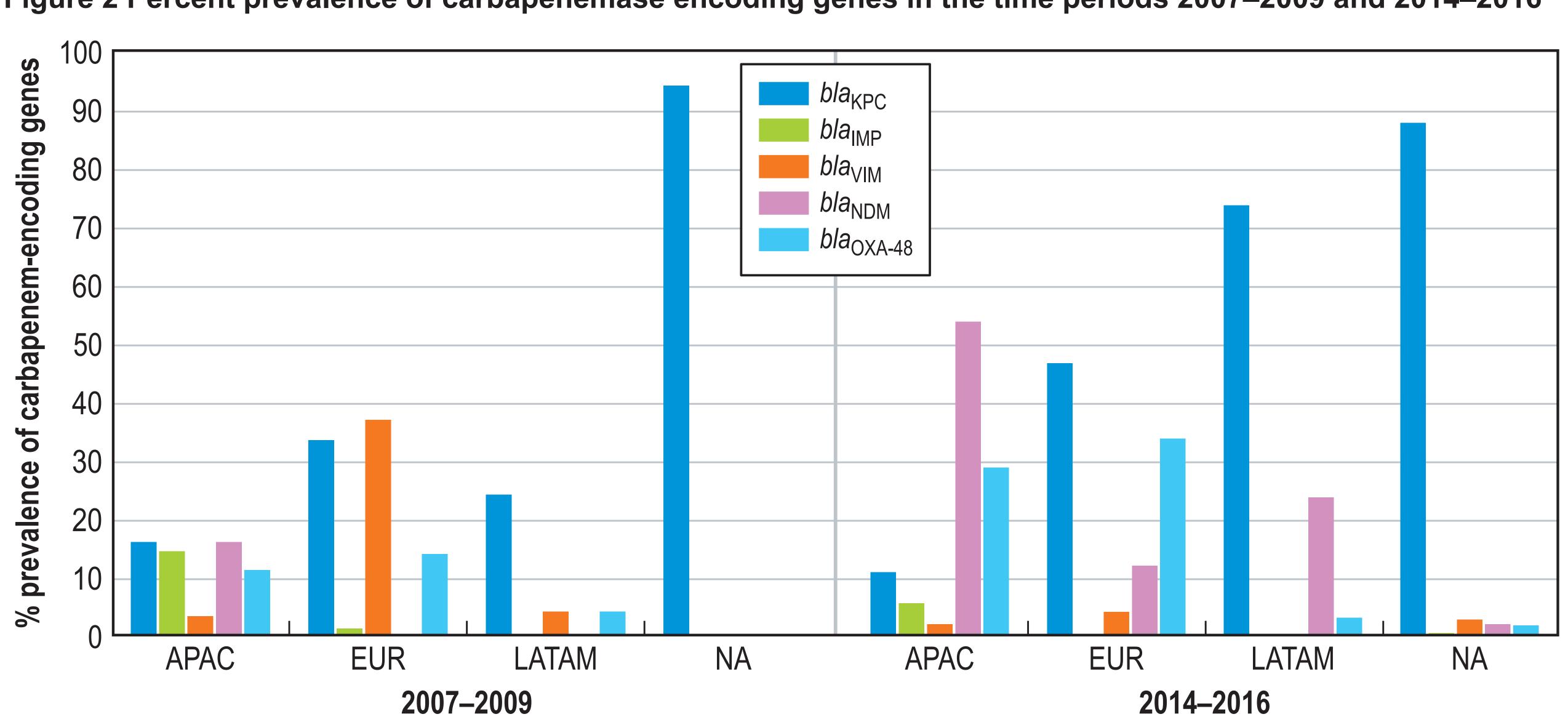



Figure 2 Percent prevalence of carbapenemase encoding genes in the time periods 2007–2009 and 2014–2016

APAC, Asia-Pacific; EUR, Europe; LATAM, Latin America; NA, North America

All subtypes of carbapenemase class included.

- Prevalence of bla_{OXA-48} -like increased significantly, from 13.8% in 2007–09 to 33.6% in 2014–16, in Europe
- Among NS ENT, the prevalence of carbapenemase increased from 76.8% in 2007–09 to 95.6% in 2014–16

Conclusions

- Prevalence of carbapenemases among Enterobacteriaceae is increasing worldwide with changing trends in different geographic regions
- bla_{KPC} remains the most prevalent carbapenemase in this collection
- bla_{NDM} has spread globally as demonstrated in smaller scale by other investigators
- bla_{NDM} is currently the most prevalent in the Asia-Pacific region, accounting for more than 50% of this region's carbapenemases
- Continued screening for NS ENT and underlying mechanisms to control the spread of these pathogens is warranted
- The SENTRY Antimicrobial Surveillance Program supplies a valuable platform for surveillance of these organisms

Acknowledgements

The authors thank all participants of the SENTRY Program for their work in providing bacterial isolates.

References

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf. Accessed May 8, 2018.

Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004). *Microb Drug Resist.* 2006 Winter; 12(4):223-30.

Kaiser RM, Castanheira M, Jones RN, Tenover F, Lynfield R. Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007–2009 SENTRY Antimicrobial Surveillance Program. *Diagn Microbiol Infect Dis.* 2013 Jul; 76(3):356-60.

Castanheira M, Mendes RE, Woosley LN, Jones RN. Trends in carbapenemase-producing Escherichia coli and Klebsiella spp. from Europe and the Americas: report from the SENTRY antimicrobial surveillance programme (2007–09). *J Antimicrob Chemother.* 2011 Jun; 66(6):1409-11.