ASM Microbe 2018 Friday - 601

In Vitro Activity of a Novel Extended-Spectrum β-Lactamase Inhibitor, AAI101, in Combination with Cefepime, against *Enterobacteriaceae* Isolates Collected during 2016 MD HUBAND¹, PR RHOMBERG¹, KA FEDLER¹, RK FLAMM¹, P KNECHTLE², S SHAPIRO² ¹ JMI Laboratories, Inc., North Liberty, Iowa, USA; ² Allecra Therapeutics SAS, F-68300 Saint-Louis, France

Introduction

- Resistance development to existing β -lactam therapies due to the spread of extendedspectrum β-lactamases (ESBLs) among *Enterobacteriaceae* has created the need for new treatment options
- AAI101 is a novel extended-spectrum β -lactamase inhibitor (Figure 1) highly active against ESBLs and a broad array of other β -lactamases
- The combination of cefepime/AAI101 recently has completed a Phase 2 clinical trial in complicated urinary tract infections and Phase 3 is planned to be initiated in 2018
- Cefepime/AAI101 was granted Qualified Infectious Disease Product and Fast Track designations by the United States Food and Drug Administration
- A collection of 572 recent *Enterobacteriaceae* clinical isolates were tested for susceptibility to cefepime/AAI101, cefepime, meropenem, and piperacillin-tazobactam
- The isolates were obtained mostly from year 2016, primarily collected from North America and Europe, and included challenge strains

Figure 1. Chemical structure of AAI101

Materials and Methods

- A collection of 572 *Enterobacteriaceae* was obtained from US (74.0%), European (25.0%), and Latin American (1.0%) medical centers, with 91.1% of organisms isolated during 2016
- The panel included 16.8% (96/572) cefepime-nonsusceptible and 5.4% (31/572) carbapenem-resistant isolates with diverse resistance mechanisms
- Organisms were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry or next-generation sequencing
- Susceptibility testing was performed using CLSI reference broth microdilution methodology; CLSI interpretive criteria were applied

- piperacillin-tazobactam

- Table 1 and Figure 2)
- 1 µg/mL, respectively
- of 8 µg/mL; Table 2 and Figure 3)

- E. coli

Table 1 Cumulative percent inhibition results for cefepime/AAI101 (fixed AAI101 concentrations of 4 µg/mL and 8 µg/mL) and comparators against 572 recent Enterobacteriaceae isolates

No. of isolates at MIC (µg/mL; cumulative %)																		
≤0.004	0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	> ^a	MIC ₅₀	MIC ₉₀
				<u> </u>														
0 0.0	6 1.0	67 12.8	216 50.5	133 73.8	58 83.9	21 87.6	21 91.3°	17 94.2	5 95.1	6 96.1	8 97.6	7 98.8	4 99.5	0 99.5	1 99.7	2 100.0	0.03	0.5
0 0.0	1 0.2	72 12.8	203 48.3	161 76.4	51 85.3	19 88.6	24 92.8	16 95.6	8 97.0	4 97.7	4 98.4	3 99.0	4 99.7	0 99.7	2 100.0		0.06	0.5
0 0.0	2 0.3	62 11.1	180 42.7	125 64.5	35 70.6	23 74.6	17 77.6	15 80.2	16 83.0	6 84.1	22 87.9	19 91.3	19 94.6	5 95.5	4 96.2	22 100.0	0.06	16
0 0.0	6 1.0	202 36.4	178 67.5	110 86.7	27 91.4	6 92.5	5 93.3	5 94.2	2 94.6	2 94.9	6 96.0					23 100.0	0.03	0.12
				0 0.0	2 0.3	39 7.2	39 14.0	85 28.8	185 61.2	79 75.0	29 80.1	27 84.8	8 86.2	16 89.0	15 91.6	48 100.0	2	128
	≤0.004 0	≤0.0040.008 0 6 0.0 1.0 0 1 0.0 1.0 0.0 2 0.0 2 0.0 0.3 0 6 0.0 1.0	≤0.0040.0080.015 0 6 67 0.0 1.0 12.8 0 1 72 0.0 0.2 62 0.0 2 62 0.0 0.3 11.1 0 6 202 0.0 1.0 36.4	≤0.0040.0080.0150.03 0 6 67 216 0.0 1.0 12.8 50.5 0 1 72 203 0.0 0.2 12.8 48.3 0 0 2 62 180 0.0 0.3 11.1 42.7 0 6 202 178 0.0 1.0 36.4 67.5	≤0.0040.0080.0150.030.06	≤ 0.004 0.0080.0150.030.060.12 $0 \\ 0.0$ $6 \\ 1.0$ $67 \\ 12.8$ $216 \\ 50.5$ $133 \\ 73.8$ $58 \\ 83.9$ $0 \\ 0.0$ $1 \\ 0.2$ $72 \\ 12.8$ $203 \\ 48.3$ $161 \\ 76.4$ $51 \\ 85.3$ $0 \\ 0.0$ $2 \\ 0.2$ $62 \\ 11.1$ 42.7 64.5 $35 \\ 70.6$ $0 \\ 0.0$ $6 \\ 1.0$ $202 \\ 11.1$ $178 \\ 42.7$ $110 \\ 64.5$ $27 \\ 91.4$ $0 \\ 0.0$ $6 \\ 1.0$ $202 \\ 36.4$ $178 \\ 67.5$ 86.7 91.4	≤ 0.004 0.0080.0150.030.060.120.25 0 6 67 2161335821 0.00 1.0 12.8 50.5 73.8 83.9 87.6 0 1 72 2031615119 0.0 0.2 12.848.376.4 85.3 88.6 0 2 62 1801253523 0.0 0.3 11.1 42.7 64.5 70.674.6 0 6 20217811027 6 0.0 1.0 36.4 67.5 86.7 91.4 92.5 0 0.3 7.2 0 2 39 0.0 0.3 7.2 0 0.3 7.2	SolutionNo. of isolates at solution ≤ 0.004 0.0080.0150.030.060.120.250.506672161335821210.01.012.850.573.883.987.691.3°001722031615119240.00.212.848.376.485.388.692.802621801253523170.00.311.142.764.570.674.677.60620217811027650.01.036.467.586.791.492.593.300.00.00.00.37.214.0	Solution Solution	SolutionNo. of isolates at MIC (µg/mL; cumulation ≤ 0.004 0.0080.0150.030.060.120.250.512 0 6 67 216 133 58 21 21 91.3° 94.2 95.1 0 1.0 12.8 50.5 73.8 83.9 87.6 91.3° 94.2 95.1 0 1 72 203 161 51 19 24 16 8 0.0 0.2 12.8 48.3 76.4 85.3 88.6 92.8 95.6 97.0 0 0 2 62 180 125 35 23 17 15 16 0.0 0.3 11.1 42.7 64.5 70.6 74.6 77.6 80.2 83.0 0 0 202 178 110 27 6 5 5 2 0.0 1.0 36.4 67.5 86.7 91.4 92.5 93.3 94.2 94.6 0.0 0.0 0.0 0.3 7.2 14.0 28.8 61.2	Solution Solution	Solution No. of isolates at MIC (μg/mL; cumulative %) ≤0.004 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 0 6 67 216 133 58 21 21 17 5 6 8 0 1.0 12.8 50.5 73.8 83.9 87.6 91.3° 94.2 95.1 96.1 97.6 0 1 72 203 161 51 19 24 16 8 4 4 0.0 1.2 72 203 161 51 19 24 16 8 4 4 0.0 0.2 62 180 125 35 23 17 15 16 6 22 6 0.0 0.3 11.1 42.7 64.5 70.6 74.6 77.6 80.2 83.0 84.1 87.9 0.0 6	Solution Solution	Solution Solution	SO.004 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 0 6 67 216 133 58 21 21 17 5 6 8 7 4 99.5 99.5 0 1.0 12.8 50.5 73.8 83.9 87.6 91.3° 94.2 95.1 96.1 97.6 98.8 99.5 99.5 0 1 72 203 161 51 19 24 16 8 4 4 3 99.5 99.7	Solution Solution	Solution Solution	Source of isolates at MIC (µg/mL; cumulative %) \$\frac{90.004}{0.008}\$ 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >* MIC ₅₀ 0 6 67 216 133 58 21 21 17 55 66 8 7 4 0 1 2 100.0 100.3 0 1 72 203 161 51 91.3° 94.2 95.6 96.1 97.6 98.8 99.5 99.7 100.0 100.0 0.03 0 1 72 203 161 51 19 92.8 95.6 97.0 97.7 49.8 99.7 100.0 2 0.06 0 0.2 62 180 125 35 23 77.6 80.2 83.0 84.1 87.9 99.7 99.7 100.0 0.06 0.06 0 0 2 62 180 125 35 23 77.6 80.2 <

^bComprised of 21 Citrobacter freundii spp. complex, 21 Citrobacter koseri, 28 Enterobacter aerogenes, 77 Enterobacter cloacae spp. complex, 121 Escherichia coli, 27 Klebsiella oxytoca, 135 Klebsiella oxytoca, 135 Klebsiella pneumoniae, 27 Morganella morganii, 27 Proteus mirabilis, 21 Proteus vulgaris group, 21 Prot $^{\circ}MIC_{\circ\circ}$ value is in bold.

Isolates were tested for susceptibility to cefepime/AAI101, cefepime, meropenem, and

Fixed AAI101 concentrations of 4 μ g/mL and 8 μ g/mL, in combination with cefepime, were chosen for broth microdilution susceptibility testing based on prior microbiological and pharmacokinetic/pharmacodynamic studies

• For comparative purposes, CLSI breakpoint interpretive criteria for cefepime were applied to cefepime/AAI101 combinations

Results

 Against the complete collection of 572 Enterobacteriaceae, which included cefepimenonsusceptible and carbapenem-resistant isolates, AAI101 restored the activity of cefepime to the susceptible interpretive category against 95.1%-97.0% of the isolates with an MIC₉₀ value of 0.5 μ g/mL (fixed AAI101 concentrations of 4 μ g/mL or 8 μ g/mL;

- MIC₉₀ values for cefepime-only and piperacillin-tazobactam were in the resistant interpretive category with values of 16 µg/mL and 128 µg/mL, respectively

- Cefepime/AAI101 activity was comparable to that of meropenem: 97.0% of isolates were inhibited at or below the cefepime susceptible breakpoint of 2 µg/mL, and 94.2% of the isolates inhibited at or below the meropenem susceptible breakpoint of

• Against cefepime-resistant, carbapenem-susceptible isolates of *Enterobacteriaceae* (n=40), AAI101 restored the activity of cefepime to the susceptible interpretive category against 97.5% of the isolates with an MIC₉₀ value of 1 μ g/mL (fixed AAI101 concentration)

- MIC₉₀ values for piperacillin-tazobactam and meropenem were >128 μ g/mL and 0.5 µg/mL, respectively (Table 2 and Figure 4)

• Against carbapenem-resistant isolates of Enterobacteriaceae (n=31), cefepime/AAI101 (fixed AAI101 concentration of 8 µg/mL), piperacillin-tazobactam, and meropenem showed 51.6%, 3.2% and 0% susceptible isolates

• Against K. pneumoniae (n=135) and E. coli (n=121), cefepime-only MIC₉₀ values were in the resistant category (MIC₉₀ values >128 μ g/mL and 32 μ g/mL, respectively). AAI101 at fixed concentrations of 4 µg/mL or 8 µg/mL restored cefepime MIC₉₀ values to the susceptible-dose-dependent and susceptible interpretive categories (Table 2)

- Piperacillin-tazobactam MIC₉₀ values (>128 μ g/mL and 64 μ g/mL, respectively) were in the resistant category for *K. pneumoniae* and intermediate interpretive category for

Meropenem MIC₉₀ value (>8 µg/mL) was in the resistant category for K. pneumoniae with 80% susceptible isolates

Figure 2 Cumulative percent inhibition results for cefepime/AAI101 (fixed AAI101 concentrations of 4 µg/mL and 8 µg/mL) and comparators against 572 recent Enterobacteriaceae isolates

- Against *Enterobacter* spp. cefepime-only MIC_{90} values were in the susceptible interpretive category for *E. aerogenes* and in the susceptible-dose-dependent category for *E. cloacae*. AAI101 reduced cefepime MIC₉₀ values by $\geq 2 \log_2$ dilutions and restored cefepime MIC₉₀ values to the susceptible interpretive category for both species (Table 2)
- *E. aerogenes* and resistant interpretive category for *E. cloacae* spp. complex isolates
- Meropenem MIC_{90} values were in the susceptible interpretive category for both species
- Against Citrobacter spp., K. oxytoca, M. morganii, Proteus spp., Providencia spp., and S. marcescens, MIC₉₀ values for cefepime-only, cefepime/AAI101, piperacillintazobactam, and meropenem were in the susceptible categories (Table 2)
- AAI101 reduced cefepime MIC_{90} values by 4 log₂ dilutions for *Proteus* spp. Reductions of 1 to 2 log₂ dilutions by AAI101 were observed for *K. oxytoca*, Providencia spp., and S. marcescens

Conclusions

- AAI101, a novel β-lactamase inhibitor with potent activity against ESBLs and a variety of other β -lactamases, restored the activity of cefepime against a panel of recent Enterobacteriaceae collected primarily in 2016 from US and European medical centers
- Activity of AAI101, when combined with cefepime, was most prominent against K. pneumoniae and E. coli, followed by E. cloacae and Proteus spp.
- Cefepime/AAI101 was as effective as meropenem and outperformed cefepime and piperacillin-tazobactam against this collection of isolates
- Against Citrobacter spp., K. oxytoca, M. morganii, Providencia spp., and S. marcescens, cefepime-only demonstrated potent activity
- Cefepime/AAI101 warrants further clinical investigation to evaluate its potential as a therapeutic option for difficult-to-treat gram-negative pathogens
- Cefepime/AAI101 may be a carbapenem-sparing option for settings with increasing resistance to piperacillin-tazobactam

Figure 3 Cumulative percent inhibition results for cefepime/AAI101 (fixed AAI101 concentrations of 4 µg/mL and 8 µg/mL) and comparators against 40 cefepimeresistant, carbapenem-susceptible *Enterobacteriaceae* isolates

- Piperacillin-tazobactam MIC_{90} values were in the intermediate interpretive category for

Table 2 Antimicrobial activity of cefepime/AAI101 and comparators against 572 recent Enterobacteriaceae isolates

	MIC _{50/90} (µg/mL)/% susceptible (CLSI)										
Organism/group (n)	Cefepime	Cefepime/ AAI101 (fixed 4 µg/mL)ª	Cefepime/ AAI101 (fixed 8 µg/mL)ª	Piperacillin- tazobactam	Meropenem						
Enterobacteriaceae (572) ^b	0.06 / 16	0.03 / 0.5	0.06 / 0.5	2 / 128	0.03 / 0.12						
	83.0%	95.1%	97.0%	84.8%	94.2%						
<i>Enterobacteriaceae</i> cefepime-resistant, carbapenem-susceptible (40) ^c	32 / >128	0.12 / 1	0.06 / 1	16 / >128	0.03 / 0.5						
	0.0%	95.0%	97.5%	57.5%	100.0%						
<i>Enterobacteriaceae</i> carbapenem-	32 / >128	8 / 32	2 / 32	>128 / >128	>8 / >8						
resistant (31) ^d	3.2%	25.8%	51.6%	3.2%	0.0%						
<i>Citrobacter</i> spp. (42) ^e	0.03 / 0.25	0.03 / 0.25	0.03 / 0.25	2 / 16	0.015 / 0.03						
	97.6%	100.0%	100.0%	90.5%	100.0%						
E. aerogenes (28)	0.03 / 0.5	0.03 / 0.12	0.03 / 0.12	2 / 64	0.03 / 0.06						
	96.4%	100.0%	100.0%	82.1%	100.0%						
E. cloacae (77)	0.06 / 4	0.06 / 0.5	0.06 / 0.5	2 / 128	0.03 / 0.12						
	88.3%	98.7%	100%	77.9%	100.0%						
<i>E. coli</i> (121)	0.06 / 32	0.03 / 0.12	0.03 / 0.12	2 / 64	0.015 / 0.06						
	72.7%	98.3%	98.3%	88.4%	95.9%						
K. pneumoniae (135)	0.06 / >128	0.06 / 8	0.06 / 2	4 / >128	0.03 / >8						
	65.2%	83.0%	90.4%	66.7%	80.0%						
K. oxytoca (27)	0.03 / 0.12	0.03 / 0.06	0.03 / 0.06	2 / 8	0.015 / 0.03						
	100.0%	100.0%	100.0%	96.3%	100.0%						
M. morganii (27)	0.03 / 0.06	0.03 / 0.06	0.03 / 0.06	0.5 / 1	0.06 / 0.12						
	100.0%	100.0%	100.0%	100.0%	100.0%						
Proteus spp. (48) ^f	0.06 / 2	0.06 / 0.12	0.06 / 0.12	0.5 / 1	0.06 / 0.12						
	91.7%	97.9%	97.9%	100.0%	97.9%						
Providencia spp. (42) ⁹	0.03 / 0.5	0.03 / 0.25	0.03 / 0.12	1 / 8	0.06 / 0.06						
	97.6%	97.6%	97.6%	97.6%	100.0%						
S. marcescens (25)	0.06 / 1	0.06 / 0.5	0.06 / 0.5	2 / 8	0.06 / 0.12						
	92.0%	96.0%	96.0%	96.0%	96.0%						

^aCefepime breakpoint interpretive criteria were applied to cefepime/AAI101 combinations for comparison purposes only. ^b Comprised of 21 Citrobacter freundii species complex, 21 C. koseri, 28 Enterobacter aerogenes, 77 E. cloacae species complex, 121 Escherichia coli, 27 Klebsiella oxytoca, 135 K. pneumoniae, 27 Morganella morganii, 27 Proteus mirabilis, 21 P. vulgaris group, 21 Providencia rettgeri, 21 P. stuartii, and 25 Serratia marcescens isolates. The cefepime- and carbapenem-resistant isolates represent subsets of the 572 *Enterobacteriaceae* surveyed. Comprised of 1 E. aerogenes, 6 E. cloacae spp. complex, 16 E. coli, 14 K. pneumoniae, 2 P. mirabilis, and 1 P. stuartii isolates. Comprised of 4 *E. coli*, 26 *K. pneumoniae*, and 1 *P. mirabilis* isolates Comprised of 21 C. koseri and 21 C. freundii species complex isolates

^fComprised of 27 *P. mirabilis* and 21 *P. vulgaris* group isolates. Comprised of 21 *P. rettgeri* and 21 *P. stuartii* isolates.

Contact Information: Michael D. Huband JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: michael-huband@jmilabs.com

To obtain a PDF of this poster: Scan the QR code

- Visit https://www.jmilabs.com/data/posters /ASM-Microbe-2018-cefepime.pdf
- Charges may apply.

No personal information is stored.

Figure 4 Cumulative percent inhibition results for cefepime/AAI101 (fixed AAI101 concentrations of 4 µg/mL and 8 µg/mL) and comparators against 31 carbapenemresistant *Enterobacteriaceae* isolates

Acknowledgements

This study and poster presentation were funded by a grant from Allecra Therapeutics SAS (Saint-Louis, France).

References

Clinical and Laboratory Standards Institute (2017). M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07-A11. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard eleventh edition. Wayne, PA: CLSI.