Antimicrobial Activity of Ceftolozane-Tazobactam Tested against Contemporary (2015–2017) P. aeruginosa Isolates from a Global Surveillance Program

INTRODUCTION

- Ceftolozane-tazobactam is an antibacterial combination of an antipseudomonal cephalosporin and a β-lactamase inhibitor.
- Ceftolozane-tazobactam is active against isolates with common β-lactam resistance mechanisms found in Pseudomonas aeruginosa, including AmpC production, up-regulated efflux pumps, and outer membrane proteins.
- Ceftolozane-tazobactam is approved in >50 countries, including the United States since 2016 and in Europe since 2015, for susceptible infections that include acute pyelonephritis and complicated intra-abdominal infections associated with MDR P. aeruginosa.
- Clinical trial results for hospital-acquired bacterial pneumonia ventilator-associated bacterial pneumonia are currently in progress (clinicaltrials.gov Identifier: NCT02070757).
- The Program to Assess Ceftolozane-Tazobactam Susceptibility (PACTS) is a global surveillance program that monitors resistance of gram-negative bacteria against ceftolozane-tazobactam.
- PACTS data for Pseudomonas aeruginosa isolates consecutively collected from various infection types in hospitalized patients from 2015–2017 were analyzed for this study.

MATERIALS AND METHODS

- A total of 7157 P. aeruginosa isolates were collected from 104 hospitals from 40 countries on 4 continents and tested for susceptibility to ceftolozane-tazobactam by CLSI broth microdilution methodology at JMI laboratories using CLSI (2018) breakpoints.
- Isolate distribution: 2710 from North America (US-only), 2384 from Europe, 695 from Latin America, and 503 from Asia-Pacific (not including China or India).
- Other agents tested were amikacin, cefepime, ceftriaxone, colistin, gentamicin, levofloxacin, meropenem, and piperacillin-tazobactam.
- Ceftolozane-tazobactam and piperacillin-tazobactam were tested with a fixed 4 mg/L concentration of tazobactam.
- Antimicrobial resistance phenotypes analyzed included:
 - Ceftolozane-nonsusceptible (CSS), colistin-nonsusceptible (CSNs), levofloxacin-nonsusceptible (LNS), ceftriaxone-nonsusceptible (CNS), and piperacillin-tazobactam-nonsusceptible (PTNS).
- Antimicrobial activity of ceftolozane-tazobactam tested against contemporary P. aeruginosa isolates from various infection types in hospitalized patients from 2015–2017 were collected from 104 hospitals from 40 countries on 4 continents and tested for susceptibility to ceftolozane-tazobactam by CLSI broth microdilution methodology at JMI laboratories using CLSI (2018) breakpoints.

RESULTS

- The most common infection type involved was pneumonia, followed by skin and soft tissue infections.
- Other infection types included intra-abdominal infections (IAI) and urinary tract infections (UTI).
- The distribution of P. aeruginosa isolates by infection type and continent is shown in Figure 1.
- Multiresistant (MDR) isolates were defined as nonsusceptible to ≥1 drug in ≥1 drug classes.
- Extensively drug-resistant (XDR) was nonsusceptible to at least 1 agent in all but 2 or fewer antimicrobial classes.
- Classically tested antimicrobial resistance phenotypes included: antipseudomonal cephalosporins, antipseudomonal carbapenems, quinolones, and antipseudomonal penicillin β-lactamase inhibitor combinations.

CONCLUSIONS

- Ceftolozane-tazobactam had activity against most P. aeruginosa isolates from patients hospitalized with various infections in 40 countries.
- Ceftolozane-tazobactam was more active than all comparators, except colistin, and maintained activity against MDR and XDR isolates and isolates nonsusceptible to all tested β-lactams.
- Ceftolozane-tazobactam was active against 12/16 colistin-nonsusceptible isolates that were 77% susceptible to colistin.
- Ceftolozane-tazobactam may be a useful treatment for infections caused by P. aeruginosa, including infections with various resistant phenotypes.

Acknowledgements

Funding for this research was provided by Merck & Co., Inc., Kenilworth, NJ USA.

Contact Information

Dee Shortridge, Michael A. Pfaller, Leonard R. Duncan, Jennifer M. Streit, Robert K. Flamm

JMI Laboratories, North Liberty, Iowa, USA.

References

Dee Shortridge, Michael A. Pfaller, Leonard R. Duncan, Jennifer M. Streit, Robert K. Flamm

JMI Laboratories, North Liberty, Iowa, USA.