ASM Microbe 2018 Sunday-468

Characterization of Variant *mcr-1.11* and Prevalence of *mcr* Genes among Escherichia coli and Klebsiella pneumoniae Clinical Isolates Collected Worldwide LM DESHPANDE, CM HUBLER, AP DAVIS, M CASTANHEIRA JMI Laboratories, North Liberty, Iowa, USA

Introduction

- The increase in the prevalence of infections caused by gram-negative pathogens that are multidrug resistant has prompted the reconsideration of polymyxins, colistin, and polymyxin B as valid therapeutic options
- Resistance to polymyxins is usually mutation driven and adds a physiologic burden on the cells harboring these mutations
- In *Klebsiella pneumoniae* and several other species, alterations in the lipid A pathway are largely responsible for polymyxin resistance
- The description of a transferrable polymyxin resistance gene in 2015 caused great concern
- Enterobacteriaceae isolates carrying mcr genes encoding phosphoethanolamine-lipid A transferase that codifies resistance to polymyxins have been reported globally among various species
- Genes *mcr-1* through *mcr-7* and multiple subtypes have been reported to encode proteins that share 30%-70% amino acid identity
- Colistin resistant Escherichia coli and K. pneumoniae clinical isolates collected worldwide during 2016 as part of the SENTRY Antimicrobial Surveillance Program were screened for the presence of *mcr* and a new *mcr-1* variant was characterized

Materials and Methods

- *E. coli* and *K. pneumoniae* clinical isolates were collected during 2016 from medical centers worldwide according to defined protocols, and 1 isolate per patient was collected
- Identification was confirmed by matrix assisted laser desorption ionization-time of flight mass spectrometry when necessary
- Isolates were susceptibility tested using reference broth microdilution methods per Clinical and Laboratory Standards Institute (CLSI) 2018 guidelines (M07)
- Interpretive criteria described by CLSI (M100, 2018) and European Committee on Antimicrobial Susceptibility Testing (EUCAST; 2018) were applied
- Isolates displaying colistin MIC \geq 4 µg/mL (resistant per EUCAST criteria) were screened for *mcr-1* and *mcr-2* genes by PCR and sequencing techniques
- The novel variant and *mcr-1* were cloned in pJET1.2 vector (Thermo Fisher Scientific, Waltham, Massachusetts, USA), transformed in an E. coli TOP10 host, and susceptibility tested
- The *mcr-1.11* native plasmid and other *mcr-1*-carrying isolates from the same medical center were characterized using next-generation sequencing and analysis (NGS) on MiSeq (Illumina, San Diego, California, USA)
- Sequences were de novo assembled and resistance determinants and plasmid incompatibility group encoding genes were searched using a curated library, applying criteria of >94% sequencing identity and 40% minimum length coverage

- assembly

mcr-1

- None of the isolates tested were mcr-2 positive
- Isolates carrying mcr-1 included 10 E. coli (United States [2], Venezuela [3], Peru [3], Colombia [1], Poland [1]) and 2 K. pneumoniae (1 each from Spain and Italy; Table 1)
- mcr-1-positive isolates were obtained from bloodstream (5), urinary tract (3), and skin and skin structure (3) infections, or patients hospitalized with pneumonia (1)
- 8/12 isolates displayed colistin MIC values at 4 µg/mL and the remaining isolates had colistin MIC values ≥8 µg/mL
- Seven isolates were resistant to cephalosporins, but were susceptible to carbapenems
- 10/12 were resistant to tetracycline and trimethoprimsulfamethoxazole
- All isolates were susceptible to tigecycline
- One *E. coli* belonging to ST95 from Peru carried an *mcr-1* gene displaying an insertion encoding for a valine in amino acid position 6
- NGS revealed that this variant, designated *mcr-1.11*, was located on a 63 Kb Incl2 conjugative plasmid (p977565) carrying no other resistance genes (Figure 1)
- Similar plasmid structures were also observed among 2 other genetically unrelated *E. coli* isolates (ST7954 and ST1485) that carried *mcr-1* from the same hospital

Plasmid was assembled using a combination of de novo and templated

 Plasmid sequence was analyzed and deposited in GenBank (Accession # KY853650)

Results

• Among 11,493 E. coli and K. pneumoniae isolates, a total of 199 (1.7%) were resistant to colistin per EUCAST criteria and 12 were positive for

Table 1 Characteristics of *mcr-1*-producing isolates

									MIC (µg/mL):						
Organism	Country	MLST	Infection type	COL	CAZ	СТХ	СРМ	P-T	IMI	CIP	GEN	ТОВ	TET	TIG	T-S
Escherichia coli	Colombia	ST131	BSI	8 (R)	0.12 (S)	≤0.06 (S)	≤0.12 (S)	2 (S)	0.25 (S)	≤0.03 (S)	1 (S)	1 (S)	2 (S)	0.12 (S)	>4 (R)
	Peru ^a	ST95	BSI	4 (R)	0.12 (S)	≤0.06 (S)	≤0.12 (S)	1 (S)	≤0.12 (S)	>4 (R)	1 (S)	1 (S)	>16 (R)	0.12 (S)	1 (S)
	Peru	ST7954	SSSI	4 (R)	0.12 (S)	≤0.06 (S)	≤0.12 (S)	2 (S)	≤0.12 (S)	>4 (R)	>8 (R)	4 (S)	>16 (R)	0.25 (S)	>4 (R)
	Peru	ST1485	SSSI	4 (R)	>8 (R)	>8 (R)	>16 (R)	2 (S)	≤0.12 (S)	1 (S)	1 (S)	1 (S)	>16 (R)	0.12 (S)	>4 (R)
	Poland	ST410	UTI	4 (R)	8 (R)	>8 (R)	8 (R)	1 (S)	≤0.12 (S)	>4 (R)	1 (S)	0.5 (S)	>16 (R)	0.5 (S)	>4 (R)
	USA	ST58	BSI	4 (R)	0.25 (S)	>8 (R)	2 (S)	2 (S)	≤0.12 (S)	0.06 (S)	1 (S)	1 (S)	>16 (R)	0.25 (S)	>4 (R)
	USA	ST1148	UTI	4 (R)	>8 (R)	>8 (R)	2 (S)	2 (S)	≤0.12 (S)	>4 (R)	0.25 (S)	0.5 (S)	>16 (R)	0.12 (S)	>4 (R)
	Venezuela	ND	BSI	4 (R)	2 (S)	>8 (R)	4 (R)	1 (S)	≤0.12 (S)	>4 (R)	0.5 (S)	1 (S)	>16 (R)	0.25 (S)	>4 (R)
	Venezuela	ND	SSSI	4 (R)	1 (S)	>8 (R)	2 (S)	1 (S)	≤0.12 (S)	>4 (R)	0.25 (S)	0.5 (S)	>16 (R)	0.12 (S)	>4 (R)
	Venezuela	ND	PIHP	8 (R)	0.12 (S)	≤0.06 (S)	≤0.12 (S)	2 (S)	≤0.12 (S)	4 (R)	0.5 (S)	0.5 (S)	>16 (R)	0.25 (S)	>4 (R)
Klebsiella pneumoniae	Italy	ST219	UTI	>8 (R)	>8 (R)	>8 (R)	>16 (R)	4 (S)	0.25 (S)	1 (S)	0.5 (S)	1 (S)	>16 (R)	0.5 (S)	>4 (R)
	Spain	ND	BSI	>8 (R)	0.12 (S)	≤0.06 (S)	≤0.12 (S)	2 (S)	≤0.12 (S)	≤0.03 (S)	0.25 (S)	0.25 (S)	4 (S)	0.5 (S)	≤0.5 (S)

- The mcr-1.11-carrying isolate also harbored ant(3")-la, aph(6)-la, aph(6)-Id, bla_{TFM-1}, fosA, qnrB19, sul2, tetA, and dfrA1
- NGS analysis identified 4 other plasmids in this isolate belonging to incompatibility groups ColB512, IncFII, IncFIB, and IncQ1
- The *mcr-1.11*-carrying *E. coli* isolate was susceptible to β -lactams, aminoglycosides, tigecycline, and trimethoprim-sulfamethoxazole, but displayed resistance to tetracycline and quinolones (Table 1)
- The mcr-1.11 cloned in an E. coli TOP10 background exhibited colistin and polymyxin B MIC results (2-4 µg/mL) similar to mcr-1 (4 µg/mL; Table 2)

Table 2 Susceptibilities of transformants carrying *mcr-1* and *mcr-1.11* expressed in the same background

	MIC (µg/mL)					
Isolate	Colistin	Polymyxin B				
<i>E. coli</i> TOP10 (pJET1.2- <i>mcr-1.11</i>)	4	2				
E. coli TOP10 (pJET1.2-mcr-1)	4	4				
E. coli TOP10 recipient strain	0.12	≤0.5				

Figure 1 Schematic representation of Incl2 plasmids carrying mcr-1-like genes detected in E. coli isolates resistant to colistin isolated from a Peruvian medical center

Conclusions

- Isolates carrying *mcr-1* were identified in only 0.1% of the isolates tested, mostly in E. coli
- The new variant, mcr-1.11, encoded similar activity against colistin when compared to *mcr-1*
- The *mcr-1* variant likely emerged via spontaneous mutation within an endemic plasmid structure
- Although the prevalence of mcr-carrying isolates is low, the transferability of this colistin-resistance gene is worrisome, and this study emphasizes the diversity and widespread nature of this resistance determinant

Acknowledgements

The authors wish to thank SENTRY Program participants for sharing the clinical isolates in a timely manner. We also wish to acknowledge the excellent support from L. Flanigan and J. Oberholser.

Contact Information: Mariana Castanheira, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: mariana-castanheira@jmilabs.com

To obtain a PDF of this poster: Scan the QR code

Visit https://www.jmilabs.com/data/posters/ASM -Microbe-2018-new-mcr-gene.pdf

Charges may apply. No personal information is stored.

References

Castanheira M, Griffin MA, Deshpande LM, et al. (2016). Detection of *mcr-1* among Escherichia coli and Klebsiella pneumoniae clinical isolates collected worldwide as part of the SENTRY Antimicrobial Surveillance Program during 2014–2015. Antimicro Agents Chemother 60: 5623-5624.

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org /fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0 _Breakpoint_Tables.pdf. Accessed January 2018.

Wang R, van Dorp L, Shaw LP, et al. (2018). The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun 9: 1179.