ASM Microbe 2018 Saturday-627

Omadacycline In Vitro Activity against Skin and Skin Structure, Respiratory, and Urinary Tract Pathogens Collected from the United States and Europe During the 2017 SENTRY Surveillance Program

MD Huband¹, MA Pfaller¹, JM Streit¹, HS Sader¹, RK Flamm JMI Laboratories, North Liberty, Iowa, USA

INTRODUCTION

- Omadacycline is an aminomethylcycline antibacterial in development for the treatment of acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP) that recently completed Phase 3 clinical trials (oral and intravenous formulations)
- A new drug application was submitted February 2, 2018, to the US Food and Drug Administration for oral and intravenous omadacycline to treat pneumonia and skin infections
- The omadacycline spectrum of activity includes a broad range of gram-positive (staphylococci, streptococci, and enterococci) and many gram-negative bacterial pathogens (Haemophilus influenzae and Moraxella catarrhalis) commonly associated with ABSSSI and CABP
- Omadacycline remains active against bacterial clinical isolates expressing common resistance mechanisms to tetracyclines, penicillins, fluoroquinolones, and macrolides including staphylococci, streptococci (Streptococcus pneumoniae and β-hemolytic streptococci [BHS]), enterococci, *H. influenzae*, and *M. catarrhalis*
- The in vitro susceptibility results for omadacycline and comparator agents against 14,000 gram-positive and -negative bacterial clinical isolates collected from patients in medical centers in the United States (US) and Europe participating in a global surveillance program during 2017 are presented

MATERIALS AND METHODS

- A total of 14,000 (non-duplicate) gram-positive and gram-negative bacterial isolates were collected from patients with multiple infection types in medical centers in the United States and Europe during 2017 and represented only 1 isolate per patient/infection episode
- Bacterial isolates were initially identified by the submitting laboratories and confirmed by JMI Laboratories using a matrix-assisted laser desorption/ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany)
- Susceptibility testing was performed according to CLSI (M07, 2018) reference broth microdilution methodology and results were interpreted using CLSI (M100, 2018) and EUCAST (2018) breakpoint interpretive criteria
- CLSI quality control (QC) reference strains were tested concurrently and included Staphylococcus aureus ATCC 29213; Enterococcus faecalis ATCC 29212; Escherichia coli ATCC 25922 and ATCC 35218; Klebsiella pneumoniae ATCC 700603; S. pneumoniae ATCC 49619; H. influenzae ATCC 49247; and Pseudomonas aeruginosa ATCC 27853

RESULTS

- Cumulative percent inhibition data for omadacycline against key gram-positive and gramnegative bacterial pathogens collected from patients in the United States and Europe during 2017 representing multiple infection types are presented in Table 1
- Omadacycline demonstrated potent activity against gram-positive clinical isolates that included S. aureus (n=2,684), MRSA (n=892), Streptococcus agalactiae (n=261), S. pyogenes (n=299), S. pneumoniae (n=968), viridans group streptococci (n=132), *E. faecalis* (n=427), and *E. faecium* (n=218) with MIC_{50/00} values of ≤0.12/≤0.25 µg/mL (Table 1)
- Coagulase negative staphylococci were inhibited by low levels of omadacycline (90.1%) inhibited at ≤0.5 µg/mL; Table 1)
- Omadacycline was equally active against *S. aureus* isolates from ABSSSI (MIC_{E0/00}) 0.12/0.25 μ g/mL; Table 2) and respiratory tract infections (RTI) (MIC_{50/00} 0.12/0.25 μ g/mL; Table 3) and retained a high level of activity against isolates displaying tetracycline-(doxycycline and tetracycline), fluoroquinolone- (levofloxacin), macrolide- (erythromycin), lincosamide- (clindamycin), and/or oxacillin-resistance
- Corresponding resistance rates (CLSI) against S. aureus were 0.6%-1.0% for doxycycline, 5.0%-5.8% for tetracycline, 9.0%-16.3% for clindamycin, 25.6%-31.9% for levofloxacin, 37.4%-43.1% for erythromycin, and 32.0%-36.5% for oxacillin (Tables
- Against MRSA isolates from ABSSSI, omadacycline (MIC_{on} 0.25 µg/mL) was 4-fold more active than vancomycin (MIC₉₀, 1 μ g/mL) and 8-fold more active than linezolid (MIC₉₀, 2 µg/mL) (Table 2)

Table 1 Antimicrobial activity of omadacycline against key gram-positive and -negative bacterial pathogens collected from patients in medical centers in the United States and Europe during 2017

Organisms (no. test

Staphylococcus aureus (2,684) MRSA (892)

Coagulase-negative staphylococci (373) Enterococcus faecalis Enterococcus faecium Streptococcus pneumoni Viridans group streptococ (132) Streptococcus pyogenes Streptococcus agalactiae (261)

Enterobacteriaceae (5,99

Escherichia coli (2,581)

ESBL-phenotype Escherichia coli (522) Klebsiella pneumoniae 1,269)

ESBL-phenotype Klebsie pneumoniae (414) Enterobacter cloacae species complex (488)

Citrobacter spp. (253)^b

Acinetobacter baumannii

Stenotrophomonas maltophilia (129) Haemophilus influenzae (556)

Moraxella catarrhalis (31

- (Table 2)

	•												•	U	
)	<0.015	0.02		No. of i	solate	s at MI	C (µg/	mL; cu	imulati	ve %)	16	20			MIC ₉₀
		3 0.1	194 7 3	2,125	0.23 289 ^a 97 3	39 98 7	31 99 9	2 1 00 0	4 1 100 0	0	10	JZ		0.12	0.25
	0.0	1 0 1	82 9 3	650 82 2	101 93 5	27 96 5	28 99.7	2 99.0	100.0 1 100.0					0.12	0.25
	2	9	94 28.2	105 56.3	40 67.0	86 90 1	36 99 7	1	100.0					0.12	0.5
	0.0	23 54	139 37.9	172 78 2	81 97.2	10 99.5	0	2 100.0						0.12	0.25
	1 0.5	12 6.0	110 56.4	75 90.8	12 96.3	7 99.5	1 100.0	10010						0.06	0.12
iae	7 0.7	119 13.0	633 78.4	195 98.6	14 100.0									0.06	0.12
cci	2 1.5	27 22.0	64 70.5	29 92.4	9 99.2	0 99.2	0 99.2	1 100.0						0.06	0.12
5		0 0.0	206 68.9	86 97.7	6 99.7	1 100.0								0.06	0.12
Э		0 0.0	62 23.8	163 86.2	36 100.0									0.12	0.25
93)			0 0.0	3 0.1	97 1.7	1,480 26.4	1,865 57.5	1,202 77.5	558 86.9	305 91.9	277 96.6	153 99.1	53 100.0	1	8
			0 0.0	1 <0.1	81 3.2	1,325 54.5	763 84.1	303 95.8	86 99.1	10 99.5	11 >99.9	1 100.0		0.5	2
				0 0.0	11 2.1	159 32.6	187 68.4	112 89.8	41 97.7	5 98.7	6 99.8	1 100.0		1	4
				0 0.0	4 0.3	52 4.4	531 46.3	370 75.4	154 87.5	101 95.5	39 98.6	13 99.6	5 100.0	2	8
ella					0 0.0	15 3.6	94 26.3	103 51.2	98 74.9	66 90.8	22 96.1	11 98.8	5 100.0	2	8
				0 0.0	2 0.4	3 1.0	116 24.8	294 85.0	30 91.2	22 95.7	17 99.2	4 100.0		2	4
					0 0.0	60 23.7	116 69.6	53 90.5	10 94.5	9 98.0	5 100.0			1	2
i			0 0.0	8 3.5	36 19.4	19 27.8	10 32.2	38 48.9	63 76.7	44 96.0	7 99.1	2 100.0		4	8
					0 0.0	1 0.8	7 6.2	36 34.1	55 76.7	20 92.2	9 99.2	1 100.0		4	8
				1 0.2	13 2.5	298 56.1	213 94.4	30 99.8	1 100.0					0.5	1
3)				236 75.4	77 100.0									≤0.12	0.25

^a MIC₉₀ values are bold ^b Contains 1 *Citrobacter amalonaticus*, 5 *C. amalonaticus/farmeri*, 142 *C. freundii* species complex, 91 *C. koseri*, and 1 unspeciated *Citrobacter* spp.

Omadacycline was very active against BHS from ABSSSI, including S. agalactiae (MIC_{50/00}, 0.12/ 0.25 μg/mL; Table 2) and *S. pyogenes* (MIC_{50/90}, 0.06/0.12 μg/mL; Table 2)

These BHS were susceptible (CLSI) to all comparator agents tested except tetracycline (20.0%-80.9% susceptible), clindamycin (62.4%-95.7% susceptible), erythromycin (48.2%-87.0% susceptible), and levofloxacin (97.6%-100.0% susceptible; Table 2)

Omadacycline was very active against enterococci, including *E. faecalis* (MIC_{50/90}, 0.12/0.25 µg/mL; 1.0% vancomycin-resistant) and *E. faecium* (MIC_{50/90}, 0.12/0.25 µg/mL; 29.3% vancomycin-resistant), from ABSSSI and its activity was unaffected against isolates displaying resistance to vancomycin

Corresponding resistance rates (CLSI) for comparators ranged from 36.6%-67.6% for minocycline, 68.3%-77.5% for tetracycline, 0%-85.4% for ampicillin, and 28.4%-90.2% for levofloxacin (Table 2) Streptococcus pneumoniae isolates from RTI (including penicillin-resistant strains) were highly susceptible to omadacycline (MIC_{50/90}, 0.06/0.12 μ g/mL), whereas 22.3%, 34.6%, and 16.9% of S. pneumoniae were resistant to tetracycline, erythromycin, and clindamycin, respectively (Table 3) Haemophilus influenzae and M. catarrhalis isolates from RTI were inhibited by low levels of omadacycline with MIC_{50/90} values of 0.5/1 μ g/mL and ≤0.12/0.25 μ g/mL, respectively (Table 3) Omadacycline was active against *Enterobacteriaceae* (including UTI isolates), inhibiting 86.9% of isolates at $\leq 4 \mu g/mL$ (Table 1); corresponding doxycycline, minocycline, and tetracycline MIC₉₀ values against UTI isolates were $\geq 16 \ \mu g/mL$ (Figure 1)

Escherichia coli isolates (including ESBL-phenotype and isolates from UTI) were susceptible to omadacycline (MIC_{50/90}, 0.5/2 µg/mL; Table 1); corresponding doxycycline, minocycline, and tetracycline MIC_{00} values against UTI isolates were $\geq 8 \ \mu g/mL$ (Figure 2)

Table 2 Antimicrobial activity of omadacycline and comparators against ABSSSI pathogens collected from medical centers in the United States and Europe during 2017

Organism (no.		
tested)	MIC ₅₀	
antimicrobial agent		
Staphylococcus aureus	(1,266)	
Omadacycline	0.12	
Doxycycline	0.12	
Tetracycline	≤0.5	
Tigecycline	0.06	
Oxacillin	0.5	
Levofloxacin	0.25	
Erythromycin	0.25	
	0.06	
Linezolia		
Daptomycin	0.25	
	I	
MRSA (405)	0.12	
Dovvoyolino		
Totroovolino	≤0.00 <0.5	
Tigoovolino	≤0.5 0.06	
Lovoflovooin	0.00	
	~4	
Clindomyoin	~o	
	0.00	
Daptomycin	0.25	
Vancomycin	0.25	
Strontopopous agalactic	I 20 (85)	
Omadacyclino	0 12	
Totracyclino	0.12	
Tigocyclino	0.06	
Lovoflovacin	0.00	
Erythromycin	0.5	
Clindamycin	<0.5	
	<u>⊐0.25</u> 1	
Dantomycin	0 12	
Vancomycin	0.12	
Strentococcus nvogene	s (162)	
	0.06	
Tetracycline	0.5	
Tigecycline	0.06	
Levofloxacin	0.5	
Frythromycin	0.03	
Clindamycin	≤0.25	
Linezolid	1	
Daptomycin	≤0.06	
Vancomycin	0.5	
Enterococcus faecalis (102)	
Omadacvcline	0.12	
Minocycline	>8	
Tetracycline	>16	
Tigecvcline	0.12	
Ampicillin	1	
Levofloxacin	1	
Linezolid	1	
Vancomvcin	1	
E. faecium (41)	-	
Omadacvcline	0.12	
Minocvcline	8	
Tetracvcline	>16	
Tigecvcline	0.06	
Ampicillin	>16	
Levofloxacin	>4	
Linezolid	2	
Vancomycin	1	

^a Criteria as published by CLSI 2018 and EUCAST 2018 ^b Breakpoints from FDA Package Insert revised 06/2016. ^d Breakpoints from FDA Package Insert revised 06/2016 applied to all *E. faecalis* but approved for vancomvcin-susceptible isolates only.

- omadacycline (MIC_{50/90} values of $\leq 0.12/\leq 0.25 \mu g/mL$)

			QIa				
	Denero	<u> </u>	5I" 	EUC			
WIC ₉₀	Range	%S	%R	%S	%R		
0.25	0.06 to 2	—	—	—	_		
0.25	≤0.06 to >8	97.3	1.0	95.3	3.1		
≤0.5	≤0.5 to >8	93.1	5.8	92.3	7.3		
0.12	0.03 to 0.5	100.0 ^b	_	100.0	0.0		
>2	≤0.06 to >2	68.0	32.0	68.0	32.0		
>4	0.06 to >4	74.3	25.6	74.3	25.7		
>8	<0.00 to >8	59.6	37 /	60.0	38.8		
-0	$\leq 0.00 \text{ to } > 0$	01.0	0.0	00.0	0.0		
0.12	$\leq 0.03 \ 10^{2}$	91.0	9.0	90.0	9.0		
2	0.25 to 4	100.0	0.0	100.0	0.0		
0.25	≤0.12 to 1	100.0		100.0	0.0		
1	0.25 to 2	100.0	0.0	100.0	0.0		
0 25	0.06 to 2						
1	<0.06 to >8	Q <u>/</u> 1	25	Q1 Q	6.2		
>2	< 0.50 to > 0		10 6	Q7 /	11 0		
-0			10.0	07.4	11.9		
0.12	0.03 to 0.5	100.0 5		100.0	0.0		
>4	0.12 to >4	33.3	66.7	33.3	66.7		
>8	0.12 to >8	24.0	74.3	24.0	74.3		
>2	≤0.03 to >2	76.5	23.5	76.5	23.5		
2	0.25 to 4	100.0	0.0	100.0	0.0		
0.25	≤0.12 to 1	100.0		100.0	0.0		
1	0.5 to 2	100.0	0.0	100.0	0.0		
0.25	0.06 to 0.25	_	_	_			
>4	0.12 to >4	20.0	78.8	20.0	80.0		
0.12	0.03 to 0.12	100.0 ^b		100.0	0.0		
1	0.5 to >4	97.6	2.4	97.6	2.4		
>16	0.03 to >16	48.2	49.4	48.2	49.4		
>2	≤0.25 to >2	62.4	34.1	65.9	34.1		
2	0.5 to 2	100.0		100.0	0.0		
0.25	<0.06 to 0.25	100.0		100.0	0.0		
0.20	_0.00 to 0.20	100.0		100.0	0.0		
0.5	0.23 10 0.3	100.0	_	100.0	0.0		
0.12	0.06 to 0.25	—	—	_			
>4	0.12 to >4	80.9	19.1	80.2	19.1		
0.06	0.03 to 0.12	100.0 ^b	_	100.0	0.0		
1	0.25 to 2	100.0	0.0	100.0	0.0		
1	≤0.015 to >16	87 0	12.3	87.0	12.3		
<0.25	<0.25 to >2	05.7	25	97 5	2.0		
-0.20 2	-0.20 10 - 2	100.0	2.0	100.0	2.0		
		100.0		100.0	0.0		
≥U.U0	$\geq 0.00 (0 0.12)$	100.0		100.0	0.0		
0.5	0.25 to 1	100.0	—	100.0	0.0		
0.25	0.03 to 0.5	_	_	_			
>8	≤0.06 to >8	25.5	67.6				
>16	≤0 12 to >16	21.6	77.5				
0 12	0 03 to 0 25	100 0 d		100.0	$\cap \cap$		
1		100.0		100.0	0.0		
			0.0				
>4	U.25 to >4	/1.6	28.4	/1.6	۷۵.4 ^۲		
2	0.5 to 4	99.0	0.0	100.0	0.0		
2	0.5 to >16	99.0	1.0	99.0	1.0		
0.25	0.03 to 1	_					
>8	≤0.06 to >8	41.5	36.6				
>16	<0.12 to >16	21 7	68.3	_	_		
- 10	-0.12 10 - 10	51.7	00.3	05.1			
0.12	0.03 (0 0.5			95.1	0.0		
>16	1 to >16	14.6	85.4	12.2	85.4		
>4	0.5 to >4	9.8	90.2	9.8	90.2 °		
2	0.5 to 2	100.0	0.0	100.0	0.0		
>16	0.5 to >16	70.7	29.3	70.7	29.3		

CONCLUSIONS

Omadacycline was highly active against S. aureus and MRSA that included isolates from ABSSSI and RTI (MIC_{50/90} values, 0.12/0.25 µg/mL) as well as strains displaying resistance to tetracyclines, fluoroquinolones, macrolides, and lincosamides

Streptococci, including viridans group, β-hemolytic streptococci (S. agalactiae and S. pyogenes) from ABSSSI and S. pneumoniae from RTI, were inhibited by low levels of

 Omadacycline remained highly active against tetracycline-resistant isolates of S. pneumoniae from RTI (22.3% tetracycline-resistant) and S. agalactiae (78.8%-80.0%) tetracycline-resistant) and S. pyogenes (19.1% tetracycline-resistant) from ABSSSI

Table 3 Antimicrobial activity of omadacycline and comparators against RTI pathogens collected from medical centers in the United States and Europe during 2017

Organism (no tested)				CL		FUCASTa				
Organishi (no. testeu)	MIC	MIC	Range							
antimicrobial agent	50	90		%5	%R	%5	%R			
Staphylococcus aureus (540)										
Omadacycline	0.12	0.25	0.03 to 4	_	_		_			
Doxycycline	0.12	0.5	≤0.06 to >8	97.8	0.6	95.4	2.6			
Tetracycline	≤0.5	1	≤0.5 to >8	94.6	5.0	93.1	5.7			
Tigecycline	0.06	0.12	≤0.015 to 0.5	100.0 ^b		100.0	0.0			
Oxacillin	0.5	>2	≤0.06 to >2	63.5	36.5	63.5	36.5			
Levofloxacin	0.25	>4	0.06 to >4	68.1	31.9	68.1	31.9			
Erythromycin	0.25	>8	≤0.06 to >8	51.7	43.1	52.0	45.7			
Clindamycin	0.06	>2	≤0.03 to >2	83.1	16.3	83.0	16.9			
Linezolid	1	2	0.25 to 4	100.0	0.0	100.0	0.0			
Daptomycin	0.25	0.25	≤0.12 to 2	99.8	—	99.8	0.2			
Vancomycin MRSA (197)	1	1	0.5 to 2	100.0	0.0	100.0	0.0			
Omadacycline	0.12	0.5	0.03 to 4	—	—	—	_			
Doxycycline	0.12	2	≤0.06 to >8	94.9	0.5	89.8	5.6			
Tetracycline	≤0.5	>8	≤0.5 to >8	89.3	10.7	86.8	11.2			
Tigecycline	0.06	0.25	≤0.015 to 0.5	100.0 ^b		100.0	0.0			
Levofloxacin	>4	>4	0.06 to >4	25.9	74.1	25.9	74.1			
Erythromycin	>8	>8	≤0.06 to >8	19.3	76.1	19.3	77.7			
Clindamycin	0.06	>2	≤0.03 to >2	59.4	40.1	59.4	40.6			
Linezolid	1	2	0.25 to 2	100.0	0.0	100.0	0.0			
Daptomycin	0.25	0.25	≤0.12 to 2	99.5	_	99.5	0.5			
Vancomycin	1	1	0.5 to 2	100.0	0.0	100.0	0.0			
Streptococcus pneumoniae (874)										
Omadacycline	0.06	0.12	≤0.015 to 0.25				—			
Tetracycline	0.5	>4	0.12 to >4	77.5	22.3	77.5	22.3			
Tigecycline	0.06	0.06	0.015 to 0.12	94.3 b						
Levofloxacin	1	2	0.25 to >4	98.3	1.5	98.3	1.7			
Penicillin	0.03	2	≤0.008 to >4	66.0 66.0	12.0 ^c 34 0 ^e	66.0 66.0	34.0 ^d			
Ceftriaxone	0.03	1	≤0.015 to >2	86.4	3.2 ^d	86.4	0.3			
Erythromycin	0.03	>16	≤0.015 to >16	65.0	34.6	65.0	34.6			
Clindamycin	≤0.25	>2	≤0.25 to >2	82.7	16.9	83.1	16.9			
Linezolid	1	2	0.25 to 2	100.0		100.0	0.0			
Haemophilus influenzae	(605)									
Omadacycline	0.5	1	≤0.12 to 4	—	_	—	_			
Tetracycline	0.5	1	0.12 to >8	98.3	1.7	98.3	1.7			
Tigecycline	0.25	0.5	0.03 to 1	88.5 ^D		_	_			
Amoxicillin-clavulanic	1	2	≤0.06 to 4	100.0	0.0	93.3	6.7			
	4	> 0					04.0			
Ampicillin	1	>8	≤ 0.12 to >8	65.7 08.5	30.0		34.3			
Azithromycin		Z	$\leq 0.12 \ 10.25$	98.5		98.3 ⁹				
Ceftriaxone	0.004	0.015	≤0.002 to 0.25	100.0		99.8	0.2			
Levofloxacin	0.015	0.03	0.008 to >2	99.4		98.7	1.3			
Trimethoprim- sulfamethoxazole	0.12	>4	≤0.06 to >4	63.1	32.8	63.1	34.6			
Moraxella catarrhalis (30)7)									
Omadacycline	≤0.12	0.25	≤0.12 to 0.25							
Tetracycline	0.25	0.5	≤0.06 to >8	99.7	0.3	99.7	0.3			
Tigecvcline	0.06	0.06	0.03 to 0.12							
Ceftriaxone	0.25	1	0.004 to 2	100.0		98.7	0.0			
Amoxicillin-clavulanic		-0.05		100.0	0.0	100.0	0.0			
acid	<u>></u> 0.25	≥U.25	≥0.25 to 0.5	100.0	0.0	00.4	0.0			
	0.00	0.00	≤0.013 to 2	100.0		33.4	0.0			
Azıtnromycin	0.015	0.03	0.03	100.0	_	100.0	0.0			
Trimethoprim- sulfamethoxazole	0.12	0.25	≤0.06 to 2	97.1	0.0	97.1	1.0			
^a Criteria as published by CLSI 2018 and	EUCAST 2018									

⁹ Breakpoints from FDA Package Insert revised 06/2016.

ing meningitis breakpoints

Jsing parenteral, meningitis breakpoints sing non-meningitis breakpoints

ercentage of wild type based on ECV. EUCAST version 8.0 (2018).

- Omadacycline exhibited potent activity against vancomycin-susceptible and -resistant isolates of *E. faecalis* (MIC_{50/90} 0.12/0.25 μ g/mL) and *E. faecium* (MIC_{50/90} 0.06/ 0.12 µg/mL), whereas minocycline and tetracycline demonstrated little utility against *E. faecalis* and *E. faecium* isolates (MIC₉₀ values >8 μ g/mL and >16 μ g/mL, respectively)
- Haemophilus influenzae and M. catarrhalis isolates from RTI were susceptible to omadacycline with MIC_{50/90} values of 0.5/1 μ g/mL and ≤0.12/0.25 μ g/mL, respectively
- Escherichia coli isolates (including ESBL phenotype and UTI isolates) were susceptible to omadacycline (MIC_{on}, 2 μg/mL), whereas doxycycline, minocycline, and tetracycline were less active (MIC_{on}, $\geq 8 \mu g/mL$)
- Results of this surveillance study support the continued development of omadacycline. especially in infections where these resistant pathogens are likely to be encountered, including ABSSSI, CABP, and UTI

Contact Information: Michael D. Huband, Associate Director JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 x203 Fax: (319) 665-3371 Email: michael-huband@jmilabs.com

Figure 1 Cumulative % inhibition of omadacycline, minocycline, doxycycline, and tetracycline against 1,276 *Enterobacteriaceae* isolates from UTI Omadacyclin

Figure 2 Cumulative % inhibition of omadacycline, minocycline, doxycycline, and tetracycline against 829 *Escherichia coli* isolates from UT

ACKNOWLEDGEMENTS

This study was performed by JMI Laboratories, Inc. and was supported by Paratek Pharmaceuticals, which included funding for services related to preparing the abstract/poster.

REFERENCES

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MIC's and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org /fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint Tables.pdf. Accessed March, 2018.

Visit http://paratekpharma.com /media/1568/asmm-2018-sat627 -sentry-2017.pdf