ASM Microbe 2018 Sunday-558

Antimicrobial Activity of Tebipenem (SPR859) against a Global Challenge Set of Enterobacteriaceae Isolates RE MENDES,¹ PR RHOMBERG,¹ H HUYNH,¹ N COTRONEO,² A RUBIO,² RK FLAMM¹ ¹JMI Laboratories, North Liberty, IA, USA; ²Spero Therapeutics, Cambridge, MA, USA

Introduction

- β-lactamase enzymes constitute the main mechanism of resistance against β-lactam agents in *Enterobacteriaceae*
- The increasing prevalence of potent β-lactamases challenges current antimicrobial therapy
- Extended-spectrum β-lactamases (ESBLs) are encoded by acquired genes and these enzymes are capable of hydrolyzing penicillins, cephalosporins, and monobactams
- Organisms that produce ESBLs are, thus, resistant to most broad-spectrum β-lactam agents, except for carbapenems
- Enterobacteriaceae-producing CTX-M enzymes are currently responsible for a series of nosocomial and community infections and have significantly contributed to the rapid global increase in the cephalosporin resistance rates
- Tebipenem is a broad-spectrum agent introduced in Japan in 2009 for the treatment of pediatric pneumonia, otitis media, and sinusitis
- Tebipenem is under development by Spero Therapeutics as the first oral carbapenem, which would be an alternative drug to combat bacteria that had developed resistance to antimicrobial agents
- This study assessed the *in vitro* activity of SPR859, the microbiologically active form of the orally available tebipenem-pivoxil prodrug SPR994, against a challenge set of *Enterobacteriaceae*

Materials and Methods

Bacterial isolates

- A total of 33 *Enterobacteriaceae* isolates displaying susceptible phenotypes to several agents, including broad-spectrum β -lactam agents, were selected as wild-type control strains
- Escherichia coli (12); Klebsiella pneumoniae (11); and Proteus spp. (10), including *P. mirabilis* (8) and *P. penneri* (2)
- A resistant subset of *Enterobacteriaceae* composed of the same species listed above was selected and molecularly characterized for the presence of genes encoding ESBL, plasmid AmpC, and/or carbapenemase enzymes (121)
- *E. coli* (48)
- K. pneumoniae (40)
- *Proteus* spp. (33)
- Identification of bacterial isolates was confirmed by standard algorithms supported by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany)

Antimicrobial susceptibility testing

- Isolates were tested for susceptibility by broth microdilution following guidelines in the CLSI M07 (2018) document
- Testing used reference 96-well panels prepared by JMI Laboratories
- Quality assurance was performed by concurrently testing CLSI-recommended quality control reference strains (*E. coli* ATCC 25922 and 35218; Pseudomonas aeruginosa ATCC 27853)
- Breakpoint criteria for comparator agents were from the CLSI M100 (2018) and EUCAST (2018) documents

- Tebipenem (MIC₅₀, 0.03-0.06 μ g/mL) showed similar MIC₅₀ results when tested against wild-type and AmpC- and/or ESBL-producing *Enterobacteriaceae*, as did meropenem (MIC₅₀, 0.03-0.06 μ g/mL) and ertapenem (MIC₅₀, ≤0.015-0.03 µg/mL) (Table 1)
- All carbapenem compounds tested herein had elevated MIC values against a challenge set of *Enterobacteriaceae* producing carbapenemase enzymes (MIC₅₀, 16-32 µg/mL) (Table 1)
- When tested against AmpC- and/or ESBL-producing *E. coli*, equivalent MIC₅₀ values (MIC₅₀, 0.03 μ g/mL) were obtained for all carbapenem compounds (Table 2
- In addition, similar MIC_{00} results were obtained for tebipenem and meropenem (MIC₉₀, 0.06 μ g/mL for both), while an 8-fold higher MIC₉₀ value was documented for ertapenem (MIC_{qn}, 0.5 µg/mL) (Table 2)</sub>
- Equivalent tebipenem MIC₅₀ values (MIC₅₀, 0.03 μ g/mL) were obtained against wild-type K. pneumoniae isolates and those with confirmed production of ESBL and/or pAmpC enzymes (Table 3)
- Similar observations were documented for meropenem against wild-type *K. pneumoniae* isolates and those with confirmed production of ESBL and/ or pAmpC enzymes (MIC₅₀, 0.03 μ g/mL against both groups) (Table 3)
- The ertapenem MIC₅₀ values obtained against wild-type K. pneumoniae $(MIC_{50}, \leq 0.015 \,\mu g/mL)$ was at least 4-fold lower than that observed against the group of isolates with ESBL and/or pAmpC enzymes (MIC₅₀, 0.06 µg/mL) (Table 3)

Table 1 Antimicrobial activity of carbapenem agents tested against *Enterobacteriaceae* clinical isolates included in the study

Genotype	
Antimicrobial agent	
Wild type	
Tebipenem (33)	
Meropenem (33)	
Ertapenem (33)	
AmpC/ESBL	
Tebipenem (77)	
Meropenem (77)	
Ertapenem (77)	
Carbapenemase	
Tebipenem (44)	
Meropenem (44)	
Ertapenem (44)	
1	

Results

- Tebipenem demonstrated MIC₅₀ results against wild-type isolates of *Proteus* K. pneumoniae isolates (MIC₅₀, 0.03 μ g/mL for both species) (Tables 2, 3, and 4)
- A similar pattern was documented for meropenem, while ertapenem type strains, regardless of species tested (Tables 2, 3, and 4)
- Tebipenem MIC results (MIC_{50/90}, 0.5/2 μ g/mL) obtained against nonwild-type Proteus spp. were slightly (2-fold) higher than those recorded against the wild-type subset (MIC_{50/90}, 0.25/1 μ g/mL) (Table 4)

Conclusions

- Overall, tebipenem was highly potent against a current challenge set of *Enterobacteriaceae* that caused clinical infections in patients seen/ hospitalized in US and European medical centers
- The production of ESBL and/or pAmpC enzymes did not adversely affect tebipenem *in vitro* activity against *E. coli*, *K. pneumoniae*, or *Proteus* spp.
- Enterobacteriaceae producing carbapenemase enzymes
- These *in vitro* results obtained for tebipenem warrant further clinical development as an oral option for treating infections caused by common *Enterobacteriaceae* species producing ESBL and/or AmpC enzymes

Acknowledgements

This study was supported by Spero Therapeutics. JMI Laboratories received compensation fees for services related to preparing this poster.

				No. of isola	ates and cum	ulative % inhi	bited at MIC	(µg/mL) of:					MIC (µ	ıg/mL)
≤0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	>32	50%	90%
		1			1					1		1	r	
4 12.1	15 57.6	5 72.7	1 75.8	4 87.9	1 90.9	3 100.0							0.03	0.5
9 27.3	16 75.8	2 81.8	2 87.9	3 97.0	1 100.0								0.03	0.25
27 81.8	3 90.9	1 93.9	2 100.0										≤0.015	0.03
		1			1					1		1	1	
2 2.6	31 42.9	8 53.2	6 61.0	4 66.2	13 83.1	8 93.5	3 97.4	2 100.0					0.06	1
3 3.9	34 48.1	17 70.1	9 81.8	6 89.6	6 97.4	0 97.4	0 97.4	2 100.0					0.06	0.5
19 24.7	26 58.4	13 75.3	9 87.0	4 92.2	3 96.1	1 97.4	0 97.4	1 98.7	0 98.7	0 98.7	1 100.0		0.03	0.25
						· · · · · · · · · · · · · · · · · · ·								
			1 2.3	0 2.3	0 2.3	0 2.3	0 2.3	3 9.1	3 15.9	7 31.8	10 54.5	20 100.0	32	>32
		1 2.3	0 2.3	0 2.3	0 2.3	1 4.5	3 11.4	8 29.5	7 45.5	8 63.6	4 72.7	12 100.0	16	>32
				1 2.3	0 2.3	0 2.3	3 9.1	3 15.9	9 36.4	4 45.5	7 61.4	17 100.0	32	>32

spp. (MIC₅₀, 0.25 µg/mL) 8-fold higher than those obtained against *E. coli* or

demonstrated consistent MIC₅₀ results (MIC₅₀, $\leq 0.015 \mu g/mL$) against wild-

- As expected, all agents tested were less active against a challenge set of

Table 2 Antimicrobial activity of carbapenem agents tested against *E. coli* clinical isolates included in the study

Genotype	No. of isolates and cumulative % inhibited at MIC (µg/mL) of:													
Antimicrobial agent	≤0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	50%	90%
Wild type														
Tebipenem (12)	3 25.0	8 91.7	1 100.0										0.03	0.03
Meropenem (12)	7 58.3	5 100.0											≤0.015	0.03
Ertapenem (12)	11 91.7	1 100.0											≤0.015	≤0.015
AmpC/ESBL						·		·						
Tebipenem (38)	2 5.3	26 73.7	7 92.1	1 94.7	0 94.7	1 97.4	0 97.4	0 97.4	1 100.0				0.03	0.06
Meropenem (38)	3 7.9	28 81.6	5 94.7	1 97.4	0 97.4	0 97.4	0 97.4	0 97.4	1 100.0				0.03	0.06
Ertapenem (38)	7 18.4	15 57.9	5 71.1	4 81.6	2 86.8	3 94.7	1 97.4	0 97.4	0 97.4	0 97.4	0 97.4	1 100.0	0.03	0.5

Table 3 Antimicrobial activity of carbapenem agents tested against *K. pneumoniae* clinical isolates included in the study

sinical isolates included in the study													
Genotype	No. of iso	MIC (µg/mL)											
Antimicrobial agent	≤0.015	0.03	0.06	0.12	0.25	0.5	50%	90%					
Wild type													
Tebipenem (11)	1 9.1	7 72.7	3 100.0				0.03	0.06					
Meropenem (11)	2 18.2	9 100.0					0.03	0.03					
Ertapenem (11)	11 100.0						≤0.015	≤0.015					
AmpC/ESBL													
Tebipenem (8)		5 62.5	1 75.0	1 87.5	1 100.0		0.03						
Meropenem (8)		5 62.5	3 100.0				0.03						
Ertapenem (8)	1 12.5	2 37.5	1 50.0	3 87.5	1 100.0		0.06						

Table 4 Antimicrobial activity of carbapenem agents tested against *Proteus* spp. clinical isolates included in the study

Genotype	No.	MIC (µg/mL)									
Antimicrobial agent	≤0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	50%	90%
Wild type ^a											
Tebipenem (10)			1 10.0	1 20.0	4 60.0	1 70.0	3 100.0			0.25	1
Meropenem (10)		2 20.0	2 40.0	2 60.0	3 90.0	1 100.0				0.12	0.25
Ertapenem (10)	5 50.0	2 70.0	1 80.0	2 100.0						≤0.015	0.12
AmpC/ESBL ^₅											
Tebipenem (31)				4 12.9	3 22.6	12 61.3	8 87.1	3 96.8	1 100.0	0.5	2
Meropenem (31)		1 3.2	9 32.3	8 58.1	6 77.4	6 96.8	0 96.8	0 96.8	1 100.0	0.12	0.5
Ertapenem (31)	11 35.5	9 64.5	7 87.1	2 93.5	1 96.8	0 96.8	0 96.8	0 96.8	1 100.0	0.03	0.12

^a P. mirabilis (8) and P. penneri (2 ^b *P. mirabilis*

Contact Information: Rodrigo E. Mendes, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: rodrigo-mendes@jmilabs.com

To obtain a PDF of this poster: Scan the QR code

Visit https://www.jmilabs.com/data/posters /ASM-Microbe-2018-tebipenem -Enterobacteriaceae-challenge.pdf

Charges may apply. No personal information is stored.

References

Castanheira M, Farrell SE, Deshpande LM, et al. (2013). Prevalence of betalactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY Antimicrobial Surveillance Program (2010). Antimicrob Agents Chemother 57: 3012-3020.

Castanheira M, Farrell SE, Krause KM, et al. (2014). Contemporary diversity of beta-lactamases among *Enterobacteriaceae* in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother 58: 833-838.

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

Doi Y, Park YS, Rivera JI, et al. (2013). Community-associated extendedspectrum beta-lactamase-producing *Escherichia coli* infection in the United States. Clin Infect Dis 56: 641-648.

El-Gamal MI, Brahim I, Hisham N, et al. (2017). Recent updates of carbapenem antibiotics. *Eur J Med Chem* 131: 185-195.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org/fileadmin/src /media/PDFs/EUCAST files/Breakpoint tables/v 8.0 Breakpoint Tables.pdf. Accessed January 2018.

Mathers AJ, Peirano G, Pitout JD (2015). The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28: 565-591.

Sakata H, Kuroki H, Ouchi K, et al. (2017). Pediatric community-acquired pneumonia treated with a three-day course of tebipenem pivoxil. J Infect *Chemother* 23: 307-311.