Activity of Telavancin against a Contemporary Collection of *Staphylococcus aureus* Clinical Isolates from All 9 US Census Bureau Divisions

LR Duncan, HS Sader, RK Flamm, RE Mendes

JMI Laboratories, North Liberty, Iowa, USA

INTRODUCTION

- Telavancin is a once-daily parenteral bactericidal lipoglycopeptide antimicrobial agent¹
- Telavancin exhibits a dual mechanism of action that involves inhibition of peptidoglycan synthesis and disruption of bacterial cell membrane function²
- Telavancin is approved in the United States for the treatment of adult patients with complicated skin and skin structure infections (cSSSIs) and hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) caused by susceptible isolates of *Staphylococcus aureus* when alternative treatments are not suitable¹
- Telavancin exhibited efficacy comparable to vancomycin in a limited number of patients with either cSSSIs or HABP/VABP and concurrent *S. aureus* bacteremia^{1,3}
- This study evaluated the activity of telavancin and comparators against a current collection of *S. aureus* isolates (including multidrugresistant [MDR] methicillin-resistant *S. aureus* [MRSA]) collected from United States (US) hospitals in 2017

MATERIALS AND METHODS

Bacterial strain collection

- A total of 3,511 *S. aureus* isolates were collected in 2017 from 34 US sites located in all 9 census bureau divisions
- Isolates were principally from cSSSIs (48.0%), pneumonia in hospitalized patients (24.7%), and bloodstream infections (BSIs; 21.7%) (Figure 1)

Antimicrobial susceptibility test methods and MDR definition

- Isolates were tested for susceptibility by current Clinical and Laboratory Standards Institute (CLSI) methods, and MIC interpretations used current CLSI and European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria⁴⁻⁶
- Telavancin broth microdilution MIC testing followed the CLSI-approved method, which includes supplementation with 0.002% polysorbate-80⁵
- The MIC medium for daptomycin testing was supplemented to 50 mg/L calcium⁵
- Bacterial inoculum densities were monitored by colony counts
- MIC values were validated by concurrently tested CLSI-recommended quality control reference strains (*S. aureus* ATCC 29213 and Enterococcus faecalis ATCC 29212)⁴
- An MRSA isolate was considered MDR if it was resistant to ≥ 3 of the following antimicrobials (using CLSI interpretive criteria⁴, where applicable): ceftaroline, clindamycin, daptomycin, erythromycin, gentamicin, levofloxacin, linezolid, teicoplanin, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin

RESULTS

- Telavancin inhibited all *S. aureus* isolates at $\leq 0.12 \mu g/mL$ (the susceptibility breakpoint), with identical MIC_{50/90} values (0.06/0.06 $\mu g/mL$ mL; **Table 1**) observed in all 9 US census divisions
- Equivalent MIC values (MIC_{50/90}, 0.06/0.06 µg/mL) were obtained for methicillin-susceptible *S. aureus* (MSSA), MRSA, and MDR MRSA isolates (**Table 1**)
- The prevalence of MRSA (32.8-61.7%) and MDR MRSA (16.6-35.2%) varied by US census division (Figure 2)
- Isolates with elevated vancomycin MIC values (2 μg/mL) remained susceptible to telavancin (MIC_{50/90}, 0.06/0.12 μg/mL; Table 1 and Figure 3)
- Among tested antimicrobials available for use in the United States, only telavancin (MIC_{50/90}, 0.06/0.06 µg/mL; 100.0% susceptible), daptomycin (MIC_{50/90}, 0.25/0.25 μ g/mL; 99.8% susceptible), linezolid (MIC_{50/90}, 1/2 μ g/mL; 100.0% susceptible), trimethoprimsulfamethoxazole (MIC_{50/90}, $\leq 0.5/1$ µg/mL; 91.1% susceptible), and vancomycin (MIC_{50/90}, 1/1 µg/mL; 100.0% susceptible) exhibited good activity against the MDR MRSA isolate subset. Based on MIC values, telavancin was 4- to 32-fold more potent than these comparators (Table 2)
- Ceftaroline (MIC_{50/90}, 1/2 μg/mL; 81.6% susceptible) exhibited lower activity against the MDR MRSA isolate subset (Table 2)

Table 1. MIC distributions for telavancin tested against 3,511 *S. aureus* isolates from the United States (2017)

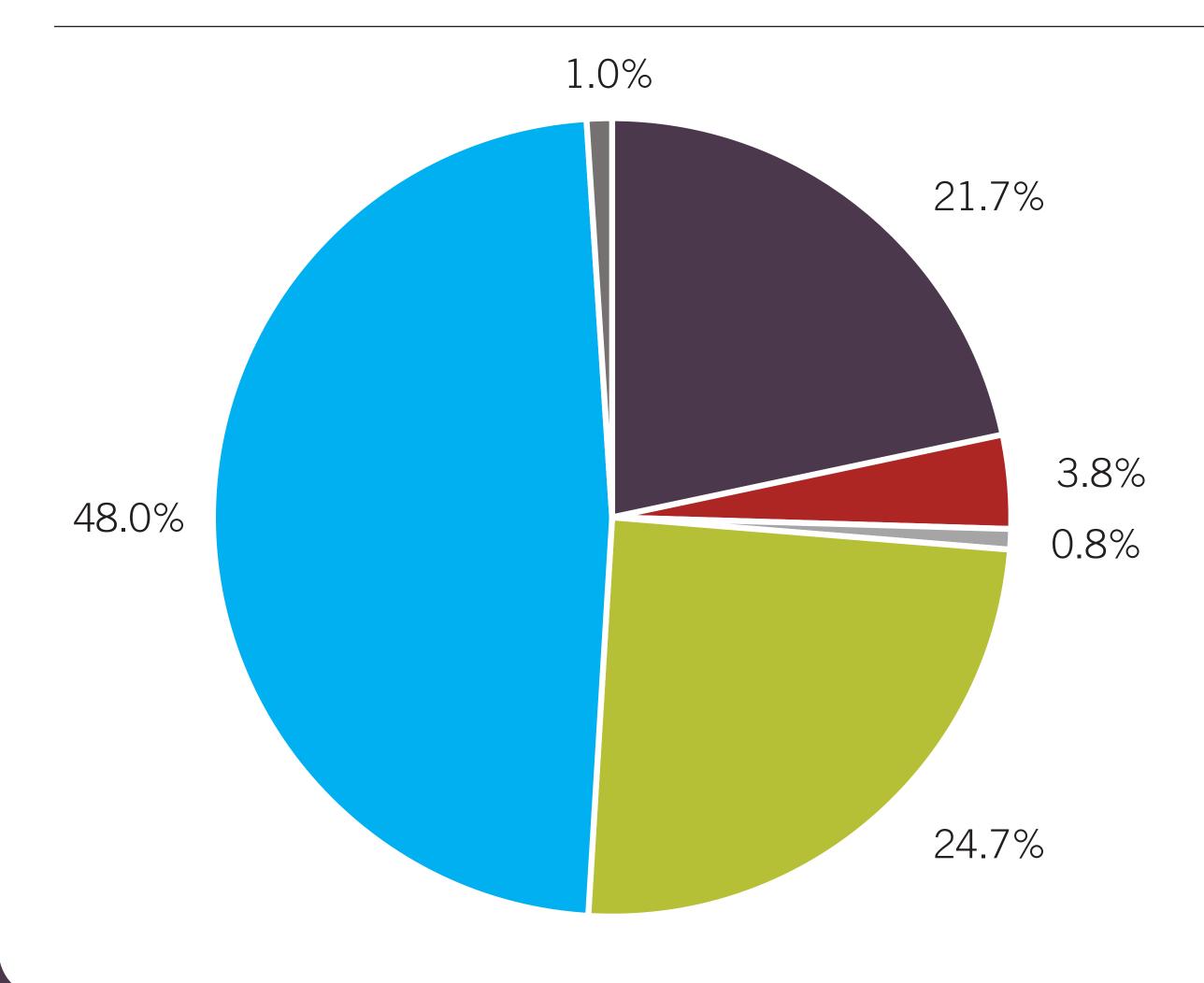
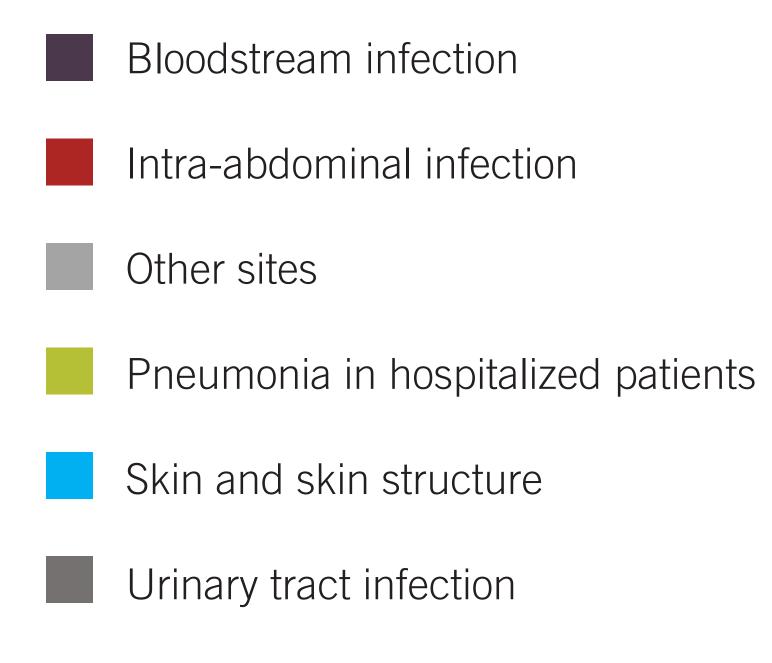
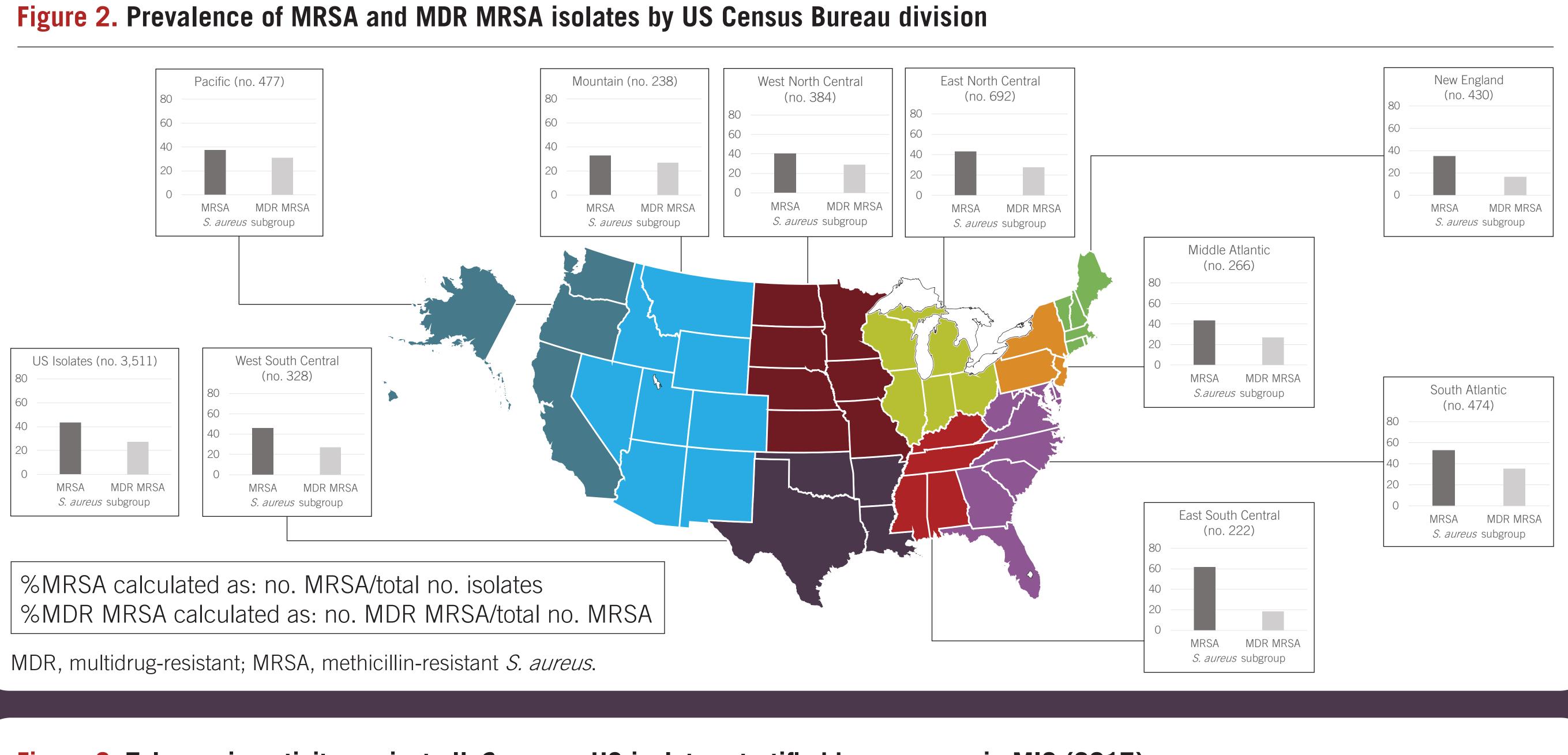

Organism/organism group (no. of isolates)							
	≤0.008	0.015	0.03	0.06	0.12	MIC ₅₀	MIC ₉₀
Staphylococcus aureus (3,511)	0 (0.0)	11 (0.3)	1,333 (38.3)	2,142 (99.3)	25 (100.0)	0.06	0.06
MSSA (1,994)	0 (0.0)	6 (0.3)	787 (39.8)	1,190 (99.4)	11 (100.0)	0.06	0.06
MRSA (1,517)	0 (0.0)	5 (0.3)	546 (36.3)	952 (99.1)	14 (100.0)	0.06	0.06
MDR MRSA (414)	0 (0.0)	2 (0.5)	131 (32.1)	277 (99.0)	4 (100.0)	0.06	0.06
Vancomycin (MIC, <2 µg/mL) (3,470)	0 (0.0)	11 (0.3)	1,331 (38.7)	2,111 (99.5)	17 (100.0)	0.06	0.06
Vancomycin (MIC, 2 µg/mL) (41)	_	0 (0.0)	2 (4.9)	31 (80.5)	8 (100.0)	0.06	0.12
MDR, multidrug-resistant; MIC, minimal inhibitory cor	ncentration; MRSA,	, methicillin-resi	stant <i>S. aureus</i> ; MS	SA, methicillin-susc	eptible <i>S. aureus.</i>		

Table 2. Antimicrobial activity for telavancin and comparator agents tested against 414 MDR MRSA isolates from the United States (2017)


Antimicrobial agent	MIC value (µg/mL)			CLSI ^a			EUCAST ^a		
	MIC ₅₀	MIC ₉₀	Range	%S	%	% R	%S	%	%R
Telavancin	0.06	0.06	0.015 to 0.12	100.0			100.0		0.0 ^b
Ceftaroline	1	2	0.25 to 2	81.6	18.4	0.0	81.6	18.4	0.0 ^c
Clindamycin	>2	>2	≤0.03 to >2	11.6	0.0	88.4	11.4	0.2	88.4
Daptomycin	0.25	0.25	≤0.12 to 2	99.8	—	_	99.8	_	0.2
Erythromycin	>8	>8	0.12 to >8	0.2	0.0	99.8	0.2	0.0	99.8
Gentamicin	≤ 1	>8	≤1 to >8	89.1	0.0	10.9	88.9	_	11.1
Levofloxacin	>4	>4	0.25 to >4	1.7	0.0	98.3	1.7	_	98.3
Linezolid	1	2	0.25 to 4	100.0	_	0.0	100.0	_	0.0
Teicoplanin	0.5	0.5	≤0.12 to 4	100.0	0.0	0.0	99.8	_	0.2
Tetracycline	≤0.5	>8	≤0.5 to >8	82.9	0.2	16.9	76.8	5.3	17.9
Trimethoprim-sulfamethoxazole	≤0.5	1	≤0.5 to >16	91.1	_	8.9	91.1	0.2	8.7
Vancomycin	1	1	0.5 to 2	100.0	0.0	0.0	100.0		0.0


CLSI, Clinical and Laboratory Standards Institute; European Committee on Antimicrobial Susceptibility Testing (EUCAST); I, intermediate; MDR, multidrug-resistant; MIC, minimal inhibitory concentration; MRSA, methicillin-resistant *S. aureus*; R, resistant; S, susceptible. ^aCriteria as published by CLSI 2018 and EUCAST 2018.

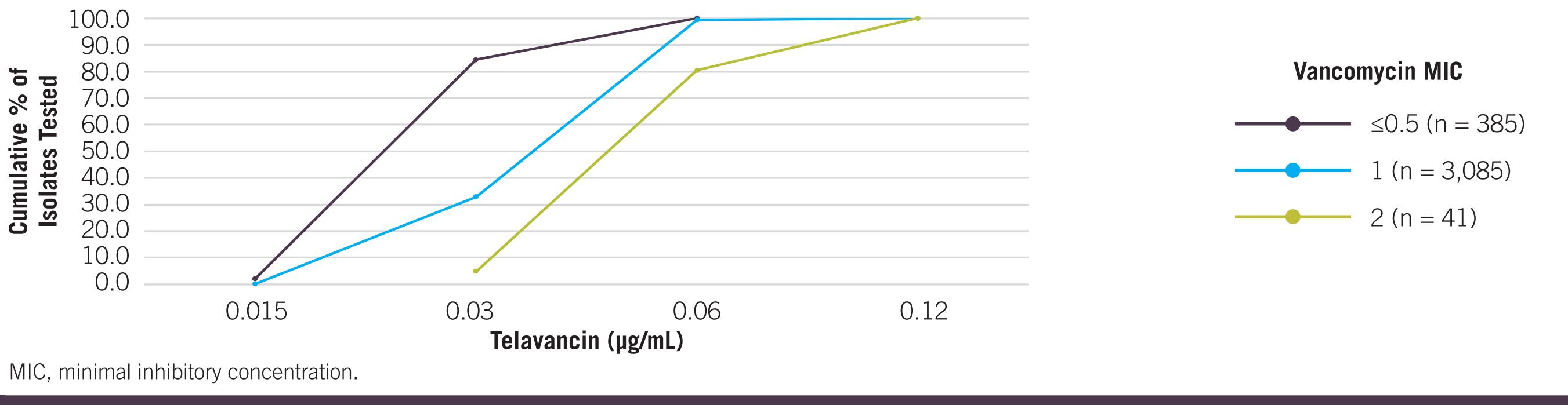

^bBreakpoint applied to all *S. aureus* but approved for MRSA isolates only. ^cUsing other than pneumonia breakpoints.

Figure 1. Infection types of tested *S. aureus* isolates

CONCLUSIONS

- including MDR MRSA
- infections, regardless of the resistance phenotype

ACKNOWLEDGEMENTS

The research and publication process was supported Theravance Biopharma R&D, Inc. Poster production support was coordinated by AlphaBioCom and funded by Theravance Biopharma US, Inc.

Leonard R. Duncan, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: leonard-duncan@jmilabs.com

• Telavancin exhibited potent in vitro antimicrobial activity against a current US collection of *S. aureus* clinical isolates from 2017,

• The potency of telavancin was 4- to 32-fold greater than tested comparators

• These data indicate that telavancin has potent *in vitro* activity against *S. aureus* isolated from cSSSIs, pneumonia, and bloodstream

REFERENCES

1) VIBATIV[®] (telavancin), USP [package insert]. South San Francisco, CA: Theravance Biopharma US, Inc.; 2016; 2) Higgins LD, Chang R, Debabov DV, et al. Antimicrob Agents Chemother. (2005) 49:1127-1134; 3) Corey GR, Rubinstein E, Stryjewski ME, et al. Clin Infect Dis. (2015) 60:787-796; 4) Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI; 5) Clinical and Laboratory Standards Institute (2018). MO7Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - eleventh edition. Wayne, PA: CLSI; 6) EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf. Accessed January 2018.