Antimicrobial Activity of Plazomicin Tested against a Worldwide Collection of Enterobacterales Isolated from Patients with Complicated Urinary Tract Infections (2014–2017)

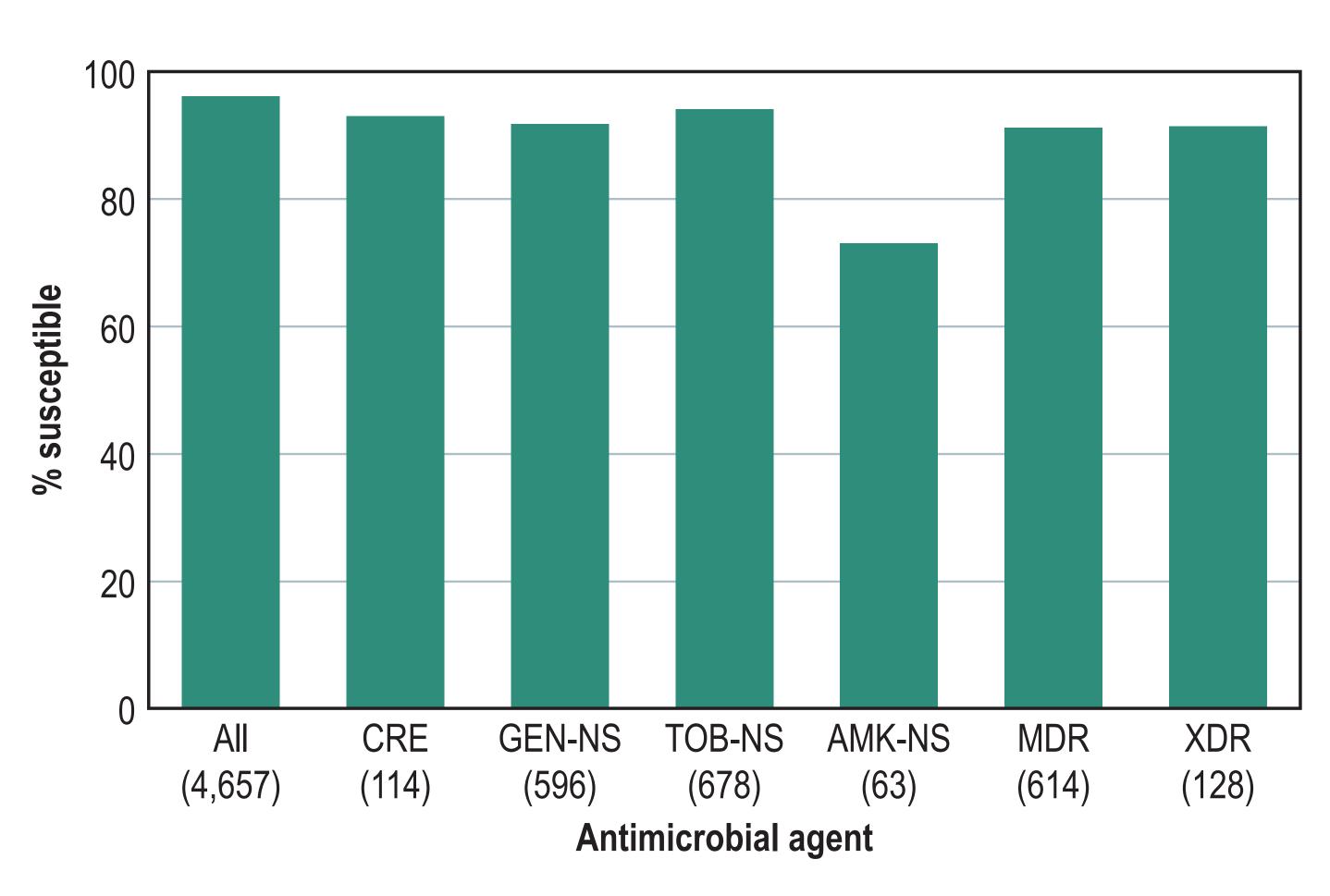
Helio S. Sader, Jennifer M. Streit, S.J. Ryan Arends, Cecilia G. Carvalhaes, Robert K. Flamm, Mariana Castanheira


JMI Laboratories, North Liberty, Iowa, USA

Introduction

- Plazomicin is a novel semisynthetic parenteral aminoglycoside that inhibits bacterial protein synthesis
- Plazomicin was approved by the United States Food and Drug Administration (US FDA) for use in adults with complicated urinary tract infections (cUTIs), including pyelonephritis
- Plazomicin displays potent in vitro activity against Enterobacterales, including both extendedspectrum β -lactamase (ESBL)-producing and carbapenem-resistant (CRE) isolates
- The enhanced Enterobacterales activity exhibited by plazomicin is due to its stability to commonly encountered aminoglycoside-modifying enzymes that compromise the activity of traditional aminoglycosides
- We evaluated the *in vitro* activity of plazomicin against clinical isolates collected from patients with cUTIs worldwide from 2014 through 2017

Materials and Methods

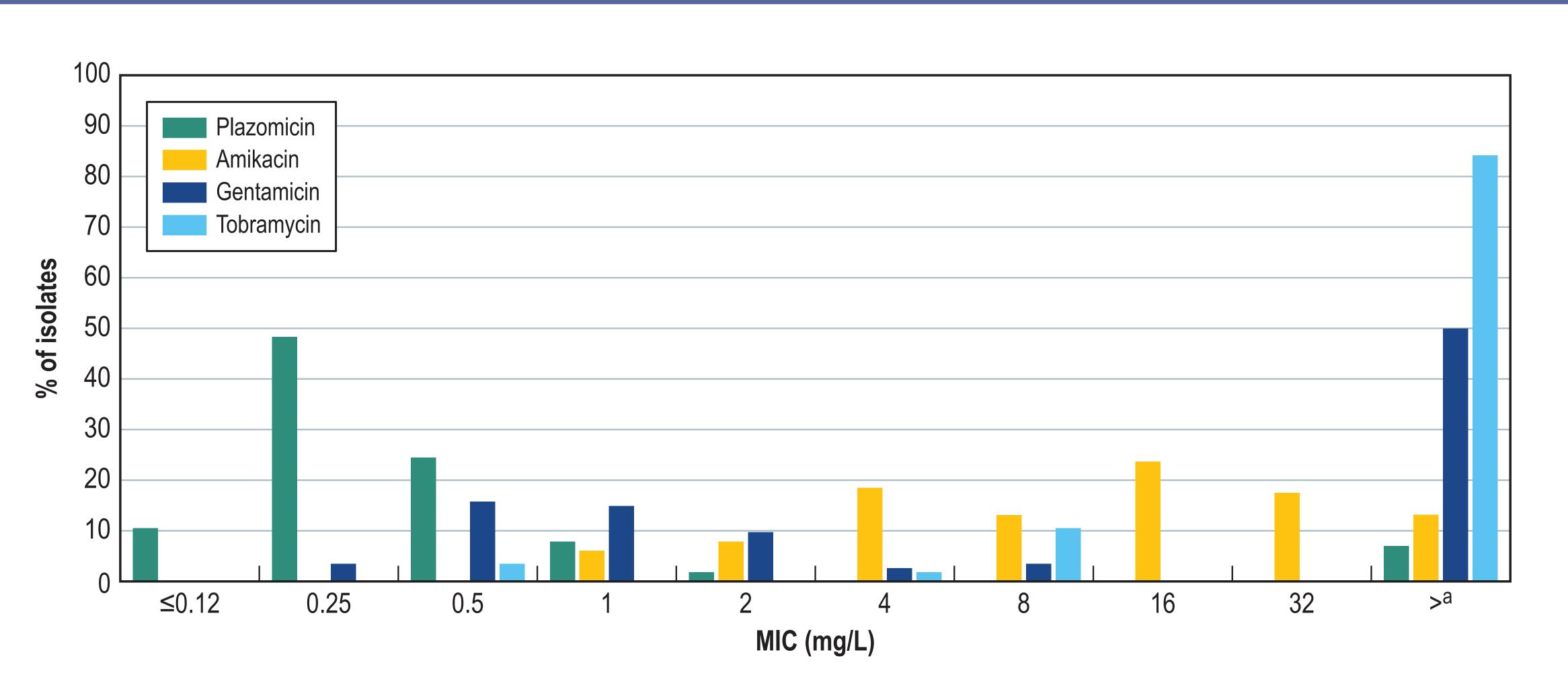

- A total of 4.657 Enterobacterales (1/patient) isolates were collected from medical centers in the United States (USA; n=2,508; 60 centers), Europe (EUR; n=1,667; 33 centers in 17 nations), Asia-Pacific (APAC; n=260; 13 centers in 7 nations), and Latin America (LATAM; n=222; 10 centers in 6 nations) in 2014–2017 (Figure 1)
- Plazomicin and comparator agents were susceptibility tested by reference broth microdilution methods at a central laboratory (JMI Laboratories, North Liberty, Iowa, USA)
- US Food and Drug Administration categorical interpretations were applied for plazomicin, and interpretations from the Clinical and Laboratory Standards Institute (CLSI) and/or US FDA breakpoint tables were applied for comparator agents, when available
- CRE was defined as any isolate exhibiting resistance (CLSI) to doripenem, imipenem, and/or meropenem (MIC values at ≥ 4 mg/L; imipenem was not applied for Proteus mirabilis and indolepositive Proteeae due to intrinsically elevated imipenem MIC values)
- Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacterales and Pseudomonas aeruginosa strains were classified according to recommended guidelines (Magiorakos et al., 2012)
- MDR = nonsusceptible (NS; CLSI breakpoints) to at least 3 antimicrobial classes
- XDR = susceptible (S) to 2 or fewer antimicrobial classes
- Quality control (QC) was performed according to CLSI guidelines (M07), and all QC MIC results were within acceptable ranges as published in CLSI documents

Results

- Plazomicin exhibited potent activity against *Enterobacterales* from all geographic regions with MIC_{50/90} values of 0.5/2 mg/L and susceptibility rates varying from 94.1% in LATAM to 96.3% in EUR; 96.1%S overall (Table 1)
- Plazomicin was highly active against CRE, with MIC_{50/90} values of 0.5/1 mg/L and susceptibility rates ranging from 100.0% in the USA to 76.2% in LATAM; 93.0%S overall (Table 1; Figures 2) and 3)
- Plazomicin retained activity against most gentamicin-nonsusceptible (MIC_{50/90}, 0.5/2 mg/L; 91.8%S), tobramycin-nonsusceptible (MIC_{50/90}, 0.5/2 mg/L; 94.1%S), and amikacinnonsusceptible isolates (MIC_{50/90}, 0.5/>128 mg/L; 73.0%S; Figure 2)
- The plazomicin MIC₅₀ value was 4-fold lower than that of amikacin and equal to those of gentamicin and tobramycin against all Enterobacterales (Table 1)
- Susceptibility rates in 2014 and 2017 were 95.1%/96.2% for plazomicin, 98.8%/98.3% for amikacin, 87.8%/85.2% for gentamicin, 87.3%/82.1% for tobramycin, and 81.1%/76.0% for ceftriaxone (data not shown)
- The Enterobacterales species most susceptible to plazomicin (lowest MIC values) were Klebsiella pneumoniae, Enterobacter cloacae, and Citrobacter koseri (MIC_{50/90}, 0.25/0.5 mg/L), followed by Klebsiella oxytoca, K. aerogenes, and Citrobacter freundii (MIC_{50/90}, 0.5/0.5 mg/L; data not shown)
- Susceptibility rates for amikacin, gentamicin, tobramycin, and other comparators were generally highest in the USA and lowest in LATAM (Table 1)

Figure 2 Plazomicin susceptibility rates for all Enterobacterales and resistant subsets collected from patients worldwide with complicated urinary tract infections

CRE, carbapenem-resistant Enterobacterales; GEN-NS, gentamicin-nonsusceptible by CLSI standards; TOB-NS, tobramycin-nonsusceptible by CLSI standards; AMK-NS, amikacin-nonsusceptible; MDR, multidrug-resistant; XDR, extensively drug-resistant.


Table 1 Antimicrobial activity of plazomicin and comparator agents tested against 4,657 Enterobacterales isolates

Antimicrobial agent	MIC ₅₀	MIC ₉₀	% susceptible ^a (no. of isolates) ^a			
			USA	EUR	APAC	LATAM
II isolates			(2,508)	(1,667)	(260)	(222)
Plazomicin ^b	0.5	2	96.2	96.3	94.6	94.1
Amikacin	2	4	98.9	98.8	98.8	94.6
Gentamicin	0.5	>8	90.2	85.6	85.4	67.6
Tobramycin	0.5	>8	90.7	81.2	83.5	60.4
Ceftriaxone	≤0.06	>8	85.9	73.9	73.5	57.7
Piperacillin-tazobactam	2	16	94.5	85.7	91.1	80.6
Meropenem	0.03	0.06	98.6	96.5	97.7	90.1
Levofloxacin	≤0.12	>4	79.5	72.3	75.8	50.5
Tigecycline ^c	0.25	1	98.3	98.3	96.2	97.7
Colistin ^d	≤0.5	>8	84.3	85.7	86.9	89.2
arbapenem-resistant Enterobacterales			(32)	(55)	(6)	(21)
Plazomicin ^b	0.5	1	100.0	96.4	83.3	76.2
Amikacin	16	>32	53.1	78.2	83.3	66.7
Gentamicin	8	>8	50.0	47.3	50.0	38.1
Tobramycin	>8	>8	3.1	7.3	16.7	0.0
Levofloxacin	>4	>4	6.2	3.6	16.7	0.0
Tigecycline ^c	0.5	2	100.0	98.2	100.0	95.2
Colistin ^d	≤0.5	>8	75.0	67.3	83.3	71.4
Iultidrug-resistant Enterobacterales			(217)	(281)	(39)	(77)
Plazomicin ^b	0.5	2	88.0	94.0	94.9	88.3
Amikacin	4	16	88.0	93.2	97.4	87.0
Gentamicin	>8	>8	38.2	41.6	35.9	23.4
Tobramycin	>8	>8	29.5	16.7	15.4	6.5
Ceftriaxone	>8	>8	17.5	8.9	7.7	5.2
Piperacillin-tazobactam	32	>64	59.4	37.4	48.7	46.8
Meropenem	0.06	16	84.3	79.4	84.6	71.4
Levofloxacin	>4	>4	5.5	3.2	7.7	3.9
Tigecycline ^c	0.5	2	89.4	97.2	97.4	98.7
Colistin ^d	≤0.5	>8	68.2	78.1	87.2	87.0
xtensively drug-resistant Enterobacterales			(34)	(67)	(5)	(22)
Plazomicin ^b	0.5	2	100.0	94.0	60.0	77.3
Amikacin	16	>32	55.9	80.6	80.0	68.2
Gentamicin	>8	>8	50.0	41.8	40.0	40.9
Tobramycin	>8	>8	5.9	3.0	20.0	0.0
Ceftriaxone	>8	>8	2.9	0.0	0.0	0.0
Piperacillin-tazobactam	>64	>64	5.9	3.0	0.0	0.0
Meropenem	8	>32	11.8	17.9	20.0	0.0
Levofloxacin	>4	>4	2.9	0.0	0.0	0.0
Tigecycline ^c	0.5	2	94.1	95.5	100.0	95.5
Colistin ^d	≤0.5	>8	67.6	59.7	80.0	68.2

FDA breakpoints published 2018-JUN-26.

^c FDA breakpoints accessed January 2019. ^d EUCAST breakpoint (2019).

Figure 3 MIC distributions for plazomicin, amikacin, gentamicin, and tobramycin when tested against carbapenem-resistant Enterobacterales isolates

^a Greater than the highest dilution tested

All	
(4,657)	
96.1	
98.6	
87.2	
85.4	
79.6	
90.5	
97.4	
75.3	
98.2	
85.2	
(114)	
93.0	
69.3	
46.5	
5.3	
4.4	
98.2	
71.1	
(614)	
91.2	
90.9	
37.8	
19.9	
11.4	
47.1	
80.5	
4.4	
94.6	
76.3	
(128)	
91.4	
71.9	
43.8	
3.9	
0.8	
3.1	
13.3	
0.8	
95.3	
64.1	

Conclusions

- Plazomicin demonstrated potent activity against a large collection of worldwide Enterobacterales isolates collected from patients with cUTIs and the agent had 4-fold lower MIC values when mnared to amikacin
- Plazomicin activity was consistent but susceptibility rates for comparators varied by geography and were generally higher in the USA than in other geographic regions

Acknowledgements

This study was performed by JMI Laboratories and supported by Achaogen, which included funding for preparing this poster.

References

Castanheira M, Deshpande LM, Woosley LN, et al. (2018). Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother 73: 3346–3354.

Clinical and Laboratory Standards Institute (2019). M100Ed29E. Performance standards for antimicrobial susceptibility testing: 29th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: eleventh edition. Wayne, PA:

Eljaaly K, Alharbi A, Alshehri S, et al. (2019). Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs in press.

EUCAST (2019). Breakpoint tables for interpretation of MIC's and zone diameters. Version 9.0, January 2019. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files /Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf

Magiorakos AP, Srinivasan A, Carey RB, et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268–281.

Contact

Helio S. Sader. MD. PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: helio-sader@jmilabs.com

To obtain a PDF of this poster:

Scan the QR code or visit https://www.jmi labs.com/data/posters/ASM-Microbe19 -plazomicin-cUTI.pdf Charges may apply. No personal

information is stored.