ASM Microbe 2017 Sunday - 23

Antimicrobial Synergistic Effect of a New Anti-Gram-Positive Agent Tested In Combination with a Polymyxin Derivative against Gram-Negative Pathogens, Including ESKAPE Group Organisms RE MENDES¹, PR RHOMBERG¹, A LEE¹, T LISTER,² TR PARR JR.², M VAARA³, RK FLAMM¹ ¹JMI Laboratories, North Liberty, Iowa, USA; ²Spero Therapeutics, Cambridge, Massachusetts, USA; ³Northern Antibiotics, Espoo, Finland

Abstract

Background: Gram-negative pathogens displaying a multidrug-resistance (MDR) phenotype have become common. Combination therapy is often used to obtain greater potency and therapeutic success when treating infections caused by MDR isolates. This study evaluated a new approach combining a novel gram-positive agent (a gyrase inhibitor; SPR719) with a polymyxin-like compound (SPR741) against Acinetobacter baumannii and Enterobacteriaceae.

Methods: A total of 153 A. baumannii and 543 Enterobacteriaceae (10 species) isolates were selected and tested for susceptibility by CLSI methods. SPR719 was tested in combination with SPR741 at a fixed concentration of 8 µg/mL. Interpretation of MICs for comparators applied CLSI/EUCAST/FDA criteria.

Results: SPR719-SPR741 (MIC_{50/90}, 0.5/2 μ g/mL) and colistin (MIC_{50/90}, ≤0.5/2 μ g/mL) were similarly active against A. baumannii and had MICs 2-fold lower than tigecycline (MIC_{50/90}, 1/4 µg/mL). Other agents tested against A. baumannii had MIC₉₀ results of >4 µg/mL. SPR719-SPR741 (MIC_{50/90}, $\leq 0.03/0.12$ µg/mL) and meropenem (MIC_{50/90}, $\leq 0.015/0.03 \ \mu g/mL$) displayed the lowest MICs, followed by collistin (MIC_{50/90}, 0.12/ 0.25 µg/mL) and tigecycline (MIC_{50/90}, 0.12/0.25 µg/mL) against *Escherichia coli* (19.0%) ESBL). SPR719-SPR741 (MIC_{50/90}, 0.06/0.25 µg/mL) inhibited 99.4% of *Klebsiella* pneumoniae (25.6% ESBL and 7.7% carbapenem resistant) at ≤2 µg/mL. Meropenem (92.9% susceptible), colistin (97.4% susceptible), and tigecycline (97.4–99.4% susceptible) were active against *K. pneumoniae*. SPR719-SPR741 (MIC_{50/00}, 0.06/ 0.12 μ g/mL) and meropenem (MIC_{50/90}, 0.03/0.03 μ g/mL) had MICs at least 2-fold lower than colistin (MIC_{50/90}, 0.25/0.25 μ g/mL) and tigecycline (MIC_{50/90}, 0.25/0.5 μ g/mL) against Citrobacter freundii. Enterobacter aerogenes and E. cloacae were inhibited by SPR719-SPR741 (MIC_{50/90}, 0.12/0.5 μ g/mL for both) at $\leq 1 \mu$ g/mL while other Enterobacteriaceae species had higher MICs.

Conclusions: SPR719-SPR741 showed potent activity against *A. baumannii* and Enterobacteriaceae. This strategy was not synergistic against Enterobacteriaceae species intrinsically resistant to polymyxin.

Introduction

- The dissemination of extended-spectrum β -lactamases (ESBLs) and carbapenemase enzymes in *Enterobacteriaceae* has become a serious health care concern
- Approximately 14% of *Enterobacteriaceae* isolates collected in 63 United States (US) hospitals in 2012–2014 displayed an ESBL phenotype, while a similar percentage (14%) of isolates were classified as ESBL in Europe during 2011–2013
- Carbapenem resistance among *Escherichia coli*, *Klebsiella* spp., and *Proteus mirabilis* comprised 2.3% and 1.8% of US isolates in 2014 and in 2012, respectively. A rate of 1.9% was reported in these organisms in Europe during 2011–2013
- The vast majority of ESBL-producing *Enterobacteriaceae* carry bla_{CTX-M} , while bla_{KPC} is common among carbapenem-resistant Enterobacteriaceae (CRE) from the US, blaker, bla_{NDM} and bla_{OXA-48-like} genes are common in Europe
- The scenario described above, lack of new antimicrobial agents approved in the last decades, clinical challenges of managing multidrug-resistant (MDR)-caused infections, and limited therapeutic options have recently prompted several agencies to promote new antimicrobial agent development
- Combination therapy is often used to obtain greater potency and therapeutic success when treating infections caused by MDR isolates.
- SPR719 is a novel antimicrobial agent that targets bacterial gyrase (Figure 1), while SPR741 is a polymyxin-derived molecule
- This study evaluated combining a novel gram-positive agent (SPR719) with a polymyxinlike compound (SPR741) against Acinetobacter baumannii and Enterobacteriaceae clinical isolates

Organism collection

- infections

Susceptibility testing

- Isolates were tested for susceptibility by broth microdilution following the Clinical and Laboratory Standards Institute (CLSI) M07-A10 document
- MIC values were validated by concurrently testing CLSI-recommended quality control (QC) reference strains
- MIC interpretations were based on the CLSI (M100-S26) and European Committee on Antimicrobial Susceptibility Testing (EUCAST; 2016) breakpoint criteria, as available
- Tigecycline MIC breakpoints were from the US Food and Drug Administrationapproved package insert
- µg/mL (Table 2)
- production (Table 1)

- >8/>8 µg/mL; Tables 1 and 3)

Materials and Methods

• This study used geographically diverse *Enterobacteriaceae* (543) and *Acinetobacter* baumannii (153) clinical isolates collected from patients worldwide with documented

 Isolates originated from 21 European countries/regions (49.9%; 347) and the US (50.1%, 349) and caused urinary tract infections (57.8%), pneumonia in hospitalized patients (18.0%), bloodstream infections (10.3%), skin and skin structure infections (9.9%), and other less common infections (4.0%)

- SPR719 was tested in combination with SPR741 at a fixed concentration of 8 µg/mL
- Bacterial inoculum density was monitored by colony counts to assure adequate number of cells for each testing event

Results

 \sim SPR719-SPR741 had MIC₅₀ and MIC₅₀ results of 0.5 and 2 µg/mL, respectively, when tested against A. baumannii clinical isolates (Table 1)

SPR719-SPR741 (MIC_{50/90}, 0.5/2 µg/mL) and colistin (MIC_{50/90}, ≤0.5/2 µg/mL) were similarly active against A. baumannii and had MIC values 2-fold lower than tigecycline (MIC_{50/90}, 1/4 µg/mL). Other agents tested against A. baumannii had MIC₀₀ results of >4

• Overall, SPR719-SPR741 showed MIC₅₀ and MIC₅₀ results of 0.06 and 2 μ g/mL, respectively, when tested against all *Enterobacteriaceae* clinical isolates (Table 1)

• MIC_{oo} results of 0.12 and 0.25 µg/mL were obtained for SPR719-SPR741 when tested against *E. coli* and *K. pneumoniae* clinical isolates, respectively, regardless of ESBL

• SPR719-SPR741, meropenem, colistin, and tigecycline showed the lowest MIC_{50} and MIC₀₀ results against *E. coli* and ESBL-producing clinical isolates (Table 3)

 When tested against K. pneumoniae, SPR719-SPR741 (MIC_{50/90}, 0.06/0.25 µg/mL) and meropenem (MIC_{50/90}, 0.03/0.12 μ g/mL) were the most potent agents, and both had MIC_{00} results at least 4-fold lower than tigecycline (MIC_{50/00}, 0.25/1 µg/mL; Table 3)

 SPR719-SPR741 (MIC_{50/90}, 0.06/0.25 µg/mL), colistin (MIC_{50/90}, ≤0.5/≤0.5 µg/mL), and tigecycline (MIC_{50/90}, 0.5/1 µg/mL) were active against ESBL-producing K. pneumoniae, while SPR719-SPR741 (MIC_{50/90}, 0.12/1 μ g/mL) and tigecycline (MIC_{50/90}, 0.5/1 μ g/mL) were active against carbapenem-resistant *K. pneumoniae* (Table 3)

 SPR719-SPR741 (MIC_{50/90}, 0.06/0.12 μg/mL) and meropenem (MIC_{50/90}, 0.03/0.03 μg/ mL) had MIC values at least 2-fold lower than colistin (MIC_{50/90}, 0.25/0.25 µg/mL) and tigecycline (MIC_{50/90}, 0.25/0.5 µg/mL) against *Citrobacter freundii* (Table 3)

Enterobacter spp. isolates were inhibited by SPR719-SPR741 (MIC_{50/90}, 0.12/0.5 µg/mL) at $\leq 1 \mu g/mL$ while other *Enterobacteriaceae* species had higher MIC results (MIC_{50/90},

Table 1 Antimicrobial activity of investigational SPR719 tested in combination with SPR741 at fixed concentration of 8 ug/mL against A. baumannii and Enterobacteriaceae clinical isolates

Organism (no. tested)	Number (cumulative ½) of isolates at MIC (µg/mL) of: ^a										
	≤0.03	0.06	0.12	0.25	0.5	1	2	4	8	>8	
A. baumannii (153)	2 (1.3%)	2 (2.6%)	18 (14.4%)	42 (41.8%)	<u>30 (61.4%)</u>	23 (76.5%)	<u>22 (90.8%)</u>	1 (91.5%)	0 (91.5%)	13 (100.0%)	
Enterobacteriaceae (543)	176 (32.4)	<u>129 (56.2)</u>	95 (73.7)	49 (82.7)	22 (86.7)	15 (89.5)	<u>9 (91.2)</u>	8 (92.6)	2 (93.0)	38 (100.0)	
Enterobacteriaceae (486) ^b	176 (36.2)	<u>129 (62.8)</u>	95 (82.3)	<u>49 (92.4)</u>	22 (96.9)	11 (99.2)	2 (99.6)	0 (99.6)	2 (100.0)		
<i>E. coli</i> (153)	<u>90 (58.8%)</u>	45 (88.2%)	<u>15 (98.0%)</u>	0 (98.0%)	1 (98.7%)	0 (98.7%)	1 (99.3%)	0 (99.3%)	1 (100.0%)		
ESBL (29) ^c	14 (48.3%)	<u>11 (86.2%)</u>	<u>4 (100.0%)</u>								
K. pneumoniae (156)	48 (30.8%)	<u>44 (59.0%)</u>	32 (79.5%)	<u>20 (92.3%)</u>	3 (94.2%)	7 (98.7%)	1 (99.4%)	0 (99.4%)	1 (100.0%)		
ESBL (40) ^c	11 (27.5%)	<u>10 (52.5%)</u>	8 (72.5%)	<u>8 (92.5%)</u>	0 (92.5%)	2 (97.5%)	0 (97.5%)	0 (97.5%)	1 (100.0%)		
CRE (12)°	2 (16.7%)	2 (33.3%)	3 (58.3%)	3 (83.3%)	0 (83.3%)	1 (91.7%)	0 (91.7%)	0 (91.7%)	1 (100.0%)		
C. freundii (14)	4 (28.6%)	<u>8 (85.7%)</u>	<u>2 (100.0%)</u>								
<i>Enterobacter</i> spp. (163) ^d	34 (20.9)	32 (40.5)	<u>46 (68.7)</u>	29 (86.5)	<u>18 (97.5)</u>	4 (100.0)					
Other species (57) ^e						4 (7.0)	7 (19.3)	8 (33.3)	0 (33.3)	<u>38 (100.0)</u>	

^a Modal MIC, MIC₅₀, and MIC₉₀ results are shown in bold, underline, and double underline, respectively
^b Excludes those Enterobacteriaceae (13 Proteus mirabilis, 14 P. vulgaris, 8 Providencia rettgeri, 8 P. stuartii, and 14 Serratia marcescens) intrinsically resistant to polymyxin
^c ESBL phenotype consisted of isolates displaying MIC values of >1 µg/mL for aztreonam, ceftazidime, and/or ceftriaxone. CRE, carbapenem-resistant Enterobacteriaceae showing MIC values of >2 µg/mL for imipenem, meropenem, and/or doripenem

^d Includes 14 *E. aerogenes* and 149 *E. cloacae* ^e Includes 13 *P. mirabilis*, 14 *P. vulgaris*, 8 *P. rettgeri*, 8 *P. stuartii*, and 14 *S. marcescens*

isolates

Organism ^a (no. tested)/	MIC			% S / % I / % R ^b						М	IC	% S / % I / % R ^b					
antimicrobial agent	50%	90%		CLSI			EUCAST			50%	90%		CLSI			EUCAST	
E. coli (153)									K. pneumoniae ESBL (40), conti	inued							
SPR719-SPR741	≤0.03	0.12							Meropenem	0.03	32	72.5	0.0	27.5	72.5	10.0	17.5
Piperacillin-tazobactam	2	8	95.4	0.7	3.9	94.1	1.3	4.6	Levofloxacin	4	>4	40.0	15.0	45.0	35.0	5.0	60.0
Aztreonam	≤0.12	16	83.7	3.3	13.1	81.0	2.6	16.3	Gentamicin	4	>8	50.0	0.0	50.0	40.0	10.0	50.0
Ceftriaxone	≤0.06	>8	82.4	0.0	17.6	82.4	0.0	17.6	Colistin	≤0.5	≤0.5				95.0	—	5.0
Cefepime	≤0.03	16	85.6	3.9	10.5	84.3	2.6	13.1	Tigecycline	0.5	1	100.0	0.0	0.0	97.5	2.5	0.0
Meropenem	≤0.015	0.03	100.0	0.0	0.0	100.0	0.0	0.0	K. pneumoniae CRE (12)								
Levofloxacin	0.06	>4	66.2	3.9	29.9	66.2	0.0	33.8	SPR719-SPR741	0.12	1				—		
Gentamicin	0.5	>8	85.7	0.0	14.3	85.7	0.0	14.3	Piperacillin-tazobactam	>64	>64	0.0	0.0	100.0	0.0	0.0	100.0
Colistin	0.12	0.25				98.7		1.3	Aztreonam	>16	>16	8.3	0.0	91.7	8.3	0.0	91.7
Tigecycline	0.12	0.25	100.0	0.0	0.0	100.0	0.0	0.0	Ceftriaxone	>8	>8	8.3	0.0	91.7	8.3	0.0	91.7
E. coli ESBL (29)									Cefepime	>16	>16	8.3	25.0	66.7	8.3	0.0	91.7
SPR719-SPR741	0.06	0.12	_	_	_	—	_	_	Meropenem	16	32	8.3	0.0	91.7	8.3	33.3	58.3
Piperacillin-tazobactam	4	32	89.7	3.4	6.9	86.2	3.4	10.3	Levofloxacin	>4		28.6	14.3	57.1	14.3	14.3	71.4
Aztreonam	16	>16	13.8	17.2	69.0	0.0	13.8	86.2	Gentamicin	>8		14.3	0.0	85.7	0.0	14.3	85.7
Ceftriaxone	>8	>8	6.9	0.0	93.1	6.9	0.0	93.1	Colistin	≤0.5	>8	_	_	_	83.3	_	16.7
Cefepime	16	>64	24.1	20.7	55.2	24.1	6.9	69.0	Tigecycline	0.5	1	100.0	0.0	0.0	91.7	8.3	0.0
Meropenem	≤0.015	0.03	100.0	0.0	0.0	100.0	0.0	0.0	C. freundii (14)								
Levofloxacin	>4	>4	26.7	0.0	73.3	26.7	0.0	73.3	SPR719-SPR741	0.06	0.12	_	_	_	_	_	_
Gentamicin	1	>8	60.0	0.0	40.0	60.0	0.0	40.0	Piperacillin-tazobactam	2	32	85.7	7.1	7.1	85.7	0.0	14.3
Colistin	0.12	0.25	_	_	_	100.0		0.0	Aztreonam	≤0.12	16	78.6	0.0	21.4	78.6	0.0	21.4
Tigecycline	0.12	0.25	100.0	0.0	0.0	100.0	0.0	0.0	Ceftriaxone	0.25	>8	78.6	0.0	21.4	78.6	0.0	21.4
K. pneumoniae (156)									Cefepime	≤0.03	1	92.9	7.1	0.0	92.9	0.0	7.1
SPR719-SPR741	0.06	0.25		_					Meropenem	0.03	0.03	100.0	0.0	0.0	100.0	0.0	0.0
Piperacillin-tazobactam	2	>64	81.3	5.2	13.5	76.1	5.2	18.7	Levofloxacin	0.06	2	92.9	0.0	7.1	85.7	7.1	7.1
Aztreonam	≤0.12	>16	76.3	0.6	23.1	75.6	0.6	23.7	Gentamicin	0.5	>8	78.6	0.0	21.4	78.6	0.0	21.4
Ceftriaxone	≤0.06	>8	74.4	0.0	25.6	74.4	0.0	25.6	Colistin	0.25	0.25	_		_	100.0	_	0.0
Cefepime	≤0.5	>16	77.6	5.1	17.3	75.6	3.8	20.5	Tigecycline	0.25	0.5	100.0	0.0	0.0	92.9	7.1	0.0
Meropenem	0.03	0.12	92.9	0.0	7.1	92.9	2.6	4.5	<i>Enterobacter</i> spp. (163) ^c								
Levofloxacin	0.06	>4	85.0	3.8	11.2	82.5	2.5	15.0	SPR719-SPR741	0.12	0.5	_		—	—	—	
Gentamicin	0.25	>8	87.5	0.0	12.5	85.0	2.5	12.5	Piperacillin-tazobactam	2	>64	76.1	8.6	15.3	71.8	4.3	23.9
Colistin	≤0.5	≤0.5			—	97.4		2.6	Aztreonam	0.25	>16	68.7	1.8	29.4	65.0	3.7	31.3
Tigecycline	0.25	1	99.4	0.6	0.0	97.4	1.9	0.6	Ceftriaxone	0.5	>8	59.5	0.6	39.9	59.5	0.6	39.9
K. pneumoniae ESBL (40)									Cefepime	≤0.5	16	82.2	6.7	11.0 ^b	76.7	11.0	12.3
SPR719-SPR741	0.06	0.25	_	—	_	_		_	Meropenem	0.03	0.12	99.4	0.0	0.6	99.4	0.6	0.0
Piperacillin-tazobactam	32	>64	45.0	15.0	40.0	40.0	5.0	55.0	Levofloxacin	≤0.03	>4	89.0	0.0	11.0	83.5	3.3	13.2
Aztreonam	>16	>16	7.5	2.5	90.0	5.0	2.5	92.5	Gentamicin	0.25	1	92.3	0.0	7.7	91.2	1.1	7.7
Ceftriaxone	>8	>8	0.0	0.0	100.0	0.0	0.0	100.0	Colistin	≤0.5	4	_	_	_	89.4		10.6
Cefepime	>16	>16	12.5	20.0	67.5	7.5	12.5	80.0	Tigecycline	0.25	2	100.0	0.0	0.0 ^c	89.6	10.4	0.0

^a ESBL phenotype consisted of isolates displaying MIC values of >1 µg/mL for aztreonam, ceftazidime, and/or ceftriaxone. CRE, carbapenem-resistant *Enterobacteriaceae* showing MIC values of >2 µg/mL for imipenem, meropenem, and/or doripenem ^b %S / %I / %R, % susceptible / % intermediate / % resistant; criteria as published by CLSI (2016) and EUCAST (2016). Interpretation for tigecycline MIC results used breakpoints approved by the US Food and Drug Administration ^c Includes 14 *E. aerogenes* and 149 *E. cloacae*

Table 2 Activity of investigational SPR719 tested in combination with SPR741 at fixed concentration of 8 µg/mL and comparator agents against 153 isolates of Acinetobacter baumannii-calcoaceticus species complex

	М	IC	% S / % I / % Rª						
Antimicrobial agent	50%	90%		CLSI		E	EUCAS	Т	
SPR719-SPR741	0.5	2						_	
Ampicillin-sulbactam	16	>32	37.9	14.4	47.7				
Piperacillin-tazobactam	>64	>64	31.6	6.6	61.8				
Cefepime	>16	>16	32.0	11.1	56.9				
Meropenem	>8	>8	39.9	0.7	59.5	39.9	4.6	55.6	
Levofloxacin	>4	>4	25.6	4.9	69.5	24.4	1.2	74.4	
Gentamicin	>8	>8	39.0	1.2	59.8	39.0		61.0	
Colistin	≤0.5	2	94.1		5.9	94.1		5.9	
Tigecycline	1	4					_	—	

^a %S / %I / %R, % susceptible / % intermediate / % resistant; criteria as published by CLSI (2016) and EUCAST (2016

Table 3 Activity of investigational SPR719 tested in combination of 8 µg/mL and comparator agents against Enterobacteriaceae clinical

Contact Information: Rodrigo E. Mendes, Ph.D. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: rodrigo-mendes@jmilabs.com

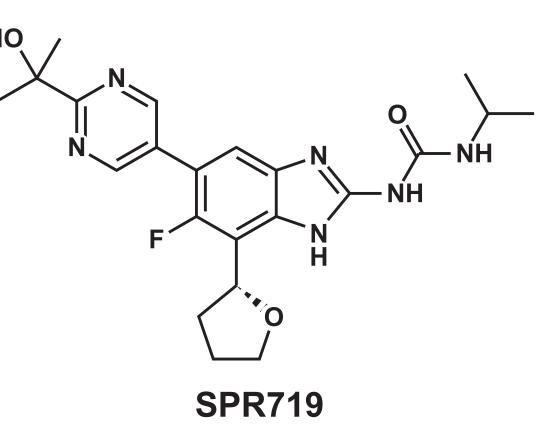


Figure 1 Structure of SPR719

Conclusions

- SPR719-SPR741 showed potent activity against *A. baumannii* and Enterobacteriaceae
- The potent *in vitro* activity of this combination may be particularly clinically relevant against ESBL-producing *E. coli* and *K. pneumoniae* as a carbapenem-sparing agent
- SPR719-SPR741 also showed potent *in vitro* activity against carbapenem-resistant K. pneumoniae where clinically available agents to treat infections caused by these organisms are limited
- The investigational agent SPR719 tested in combination with the polymyxin-like compound SPR741 did not demonstrate synergy against *Enterobacteriaceae* species intrinsically resistant to polymyxins
- The *in vitro* results obtained for this combination strategy warrant further investigations to evaluate safety and *in vivo* efficacy

Acknowledgements

This study was supported by Spero Therapeutics. JMI Laboratories received compensation fees for services in relation to preparing this presentation.

References

Boucher HW, Talbot GH, Benjamin DK, Jr., Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, for the Infectious Diseases Society of America (2013). 10 x '20 Progress development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America. Clin Infect Dis 56: 1685-1694.

Castanheira M, Farrell SE, Deshpande LM, Mendes RE, Jones RN (2013). Prevalence of β-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY Antimicrobial Surveillance Program (2010). Antimicrob Agents Chemother 57: 3012-3020.

Castanheira M, Mendes RE, Jones RN, Sader HS (2016). Changes in the Frequencies of β-Lactamase Genes among Enterobacteriaceae Isolates in U.S. Hospitals, 2012 to 2014: Activity of Ceftazidime-Avibactam Tested against β-Lactamase-Producing Isolates. Antimicrob Agents Chemother 60: 4770-4777.

Clinical and Laboratory Standards Institute (2015). M07-A10. *Methods for dilution antimicrobial* susceptibility tests for bacteria that grow aerobically; approved standard - tenth edition. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

Clinical and Laboratory Standards Institute (2016). M100-S26. Performance standards for antimicrobial susceptibility testing: 26th informational supplement. Wayne, PA, USA.

EUCAST (2016). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, January 2016. Available at: http://www.eucast.org/clinical breakpoints/. Accessed January 2016.

Lob SH, Biedenbach DJ, Badal RE, Kazmierczak KM, Sahm DF (2015). Antimicrobial resistance and resistance mechanisms of Enterobacteriaceae in ICU and non-ICU wards in Europe and North America: SMART 2011-2013. J Glob Antimicrob Resist 3: 190-197.

Tygacil (2016). Tygacil ® Package Insert. Wyeth Pharmeceuticals. Available at www.tygacil.com. Accessed March 1, 2016.