
Abstract
Background: Gram-negative pathogens displaying a multidrug-resistance (MDR) 
phenotype have become common. Combination therapy is often used to obtain greater 
potency and therapeutic success when treating infections caused by MDR isolates. 
This study evaluated a new approach combining a novel gram-positive agent (a gyrase 
inhibitor; SPR719) with a polymyxin-like compound (SPR741) against Acinetobacter 
baumannii and Enterobacteriaceae.

Methods: A total of 153 A. baumannii and 543 Enterobacteriaceae (10 species) 
isolates were selected and tested for susceptibility by CLSI methods. SPR719 was 
tested in combination with SPR741 at a fixed concentration of 8 μg/mL. Interpretation of 
MICs for comparators applied CLSI/EUCAST/FDA criteria.

Results: SPR719-SPR741 (MIC50/90, 0.5/2 μg/mL) and colistin (MIC50/90, ≤0.5/2 μg/mL) 
were similarly active against A. baumannii and had MICs 2-fold lower than tigecycline 
(MIC50/90, 1/4 μg/mL). Other agents tested against A. baumannii had MIC90 results of 
>4 μg/mL. SPR719-SPR741 (MIC50/90, ≤0.03/0.12 μg/mL) and meropenem (MIC50/90, 
≤0.015/0.03 μg/mL) displayed the lowest MICs, followed by colistin (MIC50/90, 0.12/ 
0.25 μg/mL) and tigecycline (MIC50/90, 0.12/0.25 μg/mL) against Escherichia coli (19.0% 
ESBL). SPR719-SPR741 (MIC50/90, 0.06/0.25 μg/mL) inhibited 99.4% of Klebsiella 
pneumoniae (25.6% ESBL and 7.7% carbapenem resistant) at ≤2 μg/mL. Meropenem 
(92.9% susceptible), colistin (97.4% susceptible), and tigecycline (97.4–99.4% 
susceptible) were active against K. pneumoniae. SPR719-SPR741 (MIC50/90, 0.06/ 
0.12 μg/mL) and meropenem (MIC50/90, 0.03/0.03 μg/mL) had MICs at least 2-fold 
lower than colistin (MIC50/90, 0.25/0.25 μg/mL) and tigecycline (MIC50/90, 0.25/0.5 μg/mL) 
against Citrobacter freundii. Enterobacter aerogenes and E. cloacae were inhibited 
by SPR719-SPR741 (MIC50/90, 0.12/0.5 μg/mL for both) at ≤1 μg/mL while other 
Enterobacteriaceae species had higher MICs.

Conclusions: SPR719-SPR741 showed potent activity against A. baumannii and 
Enterobacteriaceae. This strategy was not synergistic against Enterobacteriaceae 
species intrinsically resistant to polymyxin. 

Conclusions
•	 SPR719-SPR741 showed potent activity against A. baumannii and 

Enterobacteriaceae 
•	 The potent in vitro activity of this combination may be particularly clinically relevant 

against ESBL-producing E. coli and K. pneumoniae as a carbapenem-sparing agent
•	 SPR719-SPR741 also showed potent in vitro activity against carbapenem-resistant 

K. pneumoniae where clinically available agents to treat infections caused by these 
organisms are limited

•	 The investigational agent SPR719 tested in combination with the polymyxin-like 
compound SPR741 did not demonstrate synergy against Enterobacteriaceae spe-
cies intrinsically resistant to polymyxins 

•	 The in vitro results obtained for this combination strategy warrant further investiga-
tions to evaluate safety and in vivo efficacy

Introduction
•	 The dissemination of extended-spectrum β-lactamases (ESBLs) and carbapenemase 

enzymes in Enterobacteriaceae has become a serious health care concern
•	 Approximately 14% of Enterobacteriaceae isolates collected in 63 United States (US) 

hospitals in 2012–2014 displayed an ESBL phenotype, while a similar percentage (14%) 
of isolates were classified as ESBL in Europe during 2011–2013

•	 Carbapenem resistance among Escherichia coli, Klebsiella spp., and Proteus mirabilis 
comprised 2.3% and 1.8% of US isolates in 2014 and in 2012, respectively. A rate of 
1.9% was reported in these organisms in Europe during 2011–2013

•	 The vast majority of ESBL-producing Enterobacteriaceae carry blaCTX-M, while blaKPC is 
common among carbapenem-resistant Enterobacteriaceae (CRE) from the US, blaKPC, 
blaNDM and blaOXA-48-like genes are common in Europe

•	 The scenario described above, lack of new antimicrobial agents approved in the last 
decades, clinical challenges of managing multidrug-resistant (MDR)-caused infections, 
and limited therapeutic options have recently prompted several agencies to promote 
new antimicrobial agent development

•	 Combination therapy is often used to obtain greater potency and therapeutic success 
when treating infections caused by MDR isolates. 

•	 SPR719 is a novel antimicrobial agent that targets bacterial gyrase (Figure 1), while 
SPR741 is a polymyxin-derived molecule

•	 This study evaluated combining a novel gram-positive agent (SPR719) with a polymyxin-
like compound (SPR741) against Acinetobacter baumannii and Enterobacteriaceae 
clinical isolates

Materials and Methods
Organism collection

•	 This study used geographically diverse Enterobacteriaceae (543) and Acinetobacter 
baumannii (153) clinical isolates collected from patients worldwide with documented 
infections 

•	 Isolates originated from 21 European countries/regions (49.9%; 347) and the US 
(50.1%, 349) and caused urinary tract infections (57.8%), pneumonia in hospitalized 
patients (18.0%), bloodstream infections (10.3%), skin and skin structure infections 
(9.9%), and other less common infections (4.0%)

Susceptibility testing

•	 Isolates were tested for susceptibility by broth microdilution following the Clinical and 
Laboratory Standards Institute (CLSI) M07-A10 document

•	 SPR719 was tested in combination with SPR741 at a fixed concentration of 8 μg/mL
•	 Bacterial inoculum density was monitored by colony counts to assure adequate number 

of cells for each testing event
•	 MIC values were validated by concurrently testing CLSI-recommended quality control 

(QC) reference strains
•	 MIC interpretations were based on the CLSI (M100-S26) and European Committee on 

Antimicrobial Susceptibility Testing (EUCAST; 2016) breakpoint criteria, as available
•	 Tigecycline MIC breakpoints were from the US Food and Drug Administration-

approved package insert

Results
•	 SPR719-SPR741 had MIC50 and MIC90 results of 0.5 and 2 μg/mL, respectively, when 

tested against A. baumannii clinical isolates (Table 1)
•	 SPR719-SPR741 (MIC50/90, 0.5/2 μg/mL) and colistin (MIC50/90, ≤0.5/2 μg/mL) were 

similarly active against A. baumannii and had MIC values 2-fold lower than tigecycline 
(MIC50/90, 1/4 μg/mL). Other agents tested against A. baumannii had MIC90 results of >4 
μg/mL (Table 2) 

•	 Overall, SPR719-SPR741 showed MIC50 and MIC90 results of 0.06 and 2 μg/mL, 
respectively, when tested against all Enterobacteriaceae clinical isolates (Table 1)

•	 MIC90 results of 0.12 and 0.25 μg/mL were obtained for SPR719-SPR741 when tested 
against E. coli and K. pneumoniae clinical isolates, respectively, regardless of ESBL 
production (Table 1)

•	 SPR719-SPR741, meropenem, colistin, and tigecycline showed the lowest MIC50 and 
MIC90 results against E. coli and ESBL-producing clinical isolates (Table 3)

•	 When tested against K. pneumoniae, SPR719-SPR741 (MIC50/90, 0.06/0.25 μg/mL) and 
meropenem (MIC50/90, 0.03/0.12 μg/mL) were the most potent agents, and both had 
MIC90 results at least 4-fold lower than tigecycline (MIC50/90, 0.25/1 μg/mL; Table 3)

•	 SPR719-SPR741 (MIC50/90, 0.06/0.25 μg/mL), colistin (MIC50/90, ≤0.5/≤0.5 μg/mL), and 
tigecycline (MIC50/90, 0.5/1 μg/mL) were active against ESBL-producing K. pneumoniae, 
while SPR719-SPR741 (MIC50/90, 0.12/1 μg/mL) and tigecycline (MIC50/90, 0.5/1 μg/mL) 
were active against carbapenem-resistant K. pneumoniae (Table 3)

•	 SPR719-SPR741 (MIC50/90, 0.06/0.12 μg/mL) and meropenem (MIC50/90, 0.03/0.03 μg/
mL) had MIC values at least 2-fold lower than colistin (MIC50/90, 0.25/0.25 μg/mL) and 
tigecycline (MIC50/90, 0.25/0.5 μg/mL) against Citrobacter freundii (Table 3)

•	 Enterobacter spp. isolates were inhibited by SPR719-SPR741 (MIC50/90, 0.12/0.5 μg/mL) 
at ≤1 μg/mL while other Enterobacteriaceae species had higher MIC results (MIC50/90, 
>8/>8 μg/mL; Tables 1 and 3)
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Table 1 Antimicrobial activity of investigational SPR719 tested in combination with SPR741 at fixed concentration  
of 8 μg/mL against A. baumannii and Enterobacteriaceae clinical isolates

Organism (no. tested)
Number (cumulative %) of isolates at MIC (μg/mL) of:a

≤0.03 0.06 0.12 0.25 0.5 1 2 4 8 >8

A. baumannii (153)    2 (1.3%)    2 (2.6%) 18 (14.4%) 42 (41.8%) 30 (61.4%) 23 (76.5%) 22 (90.8%) 1 (91.5%) 0 (91.5%) 13 (100.0%)

Enterobacteriaceae (543) 176 (32.4) 129 (56.2) 95 (73.7) 49 (82.7) 22 (86.7) 15 (89.5) 9 (91.2) 8 (92.6) 2 (93.0) 38 (100.0)

Enterobacteriaceae (486)b 176 (36.2) 129 (62.8) 95 (82.3) 49 (92.4) 22 (96.9) 11 (99.2) 2 (99.6) 0 (99.6) 2 (100.0)

E. coli (153) 90 (58.8%) 45 (88.2%) 15 (98.0%) 0 (98.0%) 1 (98.7%) 0 (98.7%) 1 (99.3%) 0 (99.3%) 1 (100.0%)

ESBL (29)c 14 (48.3%) 11 (86.2%) 4 (100.0%)

K. pneumoniae (156) 48 (30.8%) 44 (59.0%) 32 (79.5%) 20 (92.3%) 3 (94.2%) 7 (98.7%) 1 (99.4%) 0 (99.4%) 1 (100.0%)

ESBL (40)c 11 (27.5%) 10 (52.5%) 8 (72.5%) 8 (92.5%) 0 (92.5%) 2 (97.5%) 0 (97.5%) 0 (97.5%) 1 (100.0%)

CRE (12)c 2 (16.7%) 2 (33.3%) 3 (58.3%) 3 (83.3%) 0 (83.3%) 1 (91.7%) 0 (91.7%) 0 (91.7%) 1 (100.0%)

C. freundii (14) 4 (28.6%) 8 (85.7%) 2 (100.0%)

Enterobacter spp. (163)d 34 (20.9) 32 (40.5) 46 (68.7) 29 (86.5) 18 (97.5) 4 (100.0)

Other species (57)e 4 (7.0) 7 (19.3) 8 (33.3) 0 (33.3) 38 (100.0)
a Modal MIC, MIC50, and MIC90 results are shown in bold, underline, and double underline, respectively
b Excludes those Enterobacteriaceae (13 Proteus mirabilis, 14 P. vulgaris, 8 Providencia rettgeri, 8 P. stuartii, and 14 Serratia marcescens) intrinsically resistant to polymyxin
c ESBL phenotype consisted of isolates displaying MIC values of >1 μg/mL for aztreonam, ceftazidime, and/or ceftriaxone. CRE, carbapenem-resistant Enterobacteriaceae showing MIC values of >2 μg/mL for imipenem, meropenem, and/or doripenem
d Includes 14 E. aerogenes and 149 E. cloacae
e Includes 13 P. mirabilis, 14 P. vulgaris, 8 P. rettgeri, 8 P. stuartii, and 14 S. marcescens

Table 3 Activity of investigational SPR719 tested in combination with SPR741 at fixed concentration of 8 μg/mL and comparator agents against Enterobacteriaceae clinical 
isolates

Organisma (no. tested)/
antimicrobial agent

MIC % S / % I / % Rb MIC % S / % I / % Rb

50% 90% CLSI EUCAST 50% 90% CLSI EUCAST

E. coli (153) K. pneumoniae ESBL (40), continued

SPR719-SPR741 ≤0.03 0.12 — — — — — — Meropenem 0.03 32  72.5  0.0  27.5  72.5 10.0  17.5

Piperacillin-tazobactam 2 8  95.4  0.7   3.9  94.1  1.3   4.6 Levofloxacin 4 >4  40.0 15.0  45.0  35.0  5.0  60.0

Aztreonam ≤0.12 16  83.7  3.3  13.1  81.0  2.6  16.3 Gentamicin 4 >8  50.0  0.0  50.0  40.0 10.0  50.0

Ceftriaxone ≤0.06 >8  82.4  0.0  17.6  82.4  0.0  17.6 Colistin ≤0.5 ≤0.5 — — —  95.0 —   5.0

Cefepime ≤0.03 16  85.6  3.9  10.5  84.3  2.6  13.1 Tigecycline 0.5 1 100.0  0.0   0.0  97.5  2.5   0.0

Meropenem ≤0.015 0.03 100.0  0.0   0.0 100.0  0.0   0.0 K. pneumoniae CRE (12)

Levofloxacin 0.06 >4  66.2  3.9  29.9  66.2  0.0  33.8 SPR719-SPR741 0.12 1 — — — — — —

Gentamicin 0.5 >8  85.7  0.0  14.3  85.7  0.0  14.3 Piperacillin-tazobactam >64 >64   0.0  0.0 100.0   0.0  0.0 100.0

Colistin 0.12 0.25 — — —  98.7 —   1.3 Aztreonam >16 >16   8.3  0.0  91.7   8.3  0.0  91.7

Tigecycline 0.12 0.25 100.0  0.0   0.0 100.0  0.0   0.0 Ceftriaxone >8 >8   8.3  0.0  91.7   8.3  0.0  91.7

E. coli ESBL (29) Cefepime >16 >16   8.3 25.0  66.7   8.3  0.0  91.7

SPR719-SPR741 0.06 0.12 — — — — — — Meropenem 16 32   8.3  0.0  91.7   8.3 33.3  58.3

Piperacillin-tazobactam 4 32  89.7  3.4   6.9  86.2  3.4  10.3 Levofloxacin >4 —  28.6 14.3  57.1  14.3 14.3  71.4

Aztreonam 16 >16  13.8 17.2  69.0   0.0 13.8  86.2 Gentamicin >8 —  14.3  0.0  85.7   0.0 14.3  85.7

Ceftriaxone >8 >8   6.9  0.0  93.1   6.9  0.0  93.1 Colistin ≤0.5 >8 — — —  83.3 —  16.7

Cefepime 16 >64  24.1 20.7  55.2  24.1  6.9  69.0 Tigecycline 0.5 1 100.0  0.0   0.0  91.7  8.3   0.0

Meropenem ≤0.015 0.03 100.0  0.0   0.0 100.0  0.0   0.0 C. freundii (14)

Levofloxacin >4 >4  26.7  0.0  73.3  26.7  0.0  73.3 SPR719-SPR741 0.06 0.12 — — — — — —

Gentamicin 1 >8  60.0  0.0  40.0  60.0  0.0  40.0 Piperacillin-tazobactam 2 32  85.7  7.1   7.1  85.7  0.0  14.3

Colistin 0.12 0.25 — — — 100.0 —   0.0 Aztreonam ≤0.12 16  78.6  0.0  21.4  78.6  0.0  21.4

Tigecycline 0.12 0.25 100.0  0.0   0.0 100.0  0.0   0.0 Ceftriaxone 0.25 >8  78.6  0.0  21.4  78.6  0.0  21.4

K. pneumoniae (156) Cefepime ≤0.03 1  92.9  7.1   0.0  92.9  0.0   7.1

SPR719-SPR741 0.06 0.25 — — — — — — Meropenem 0.03 0.03 100.0  0.0   0.0 100.0  0.0   0.0

Piperacillin-tazobactam 2 >64  81.3  5.2  13.5  76.1  5.2  18.7 Levofloxacin 0.06 2  92.9  0.0   7.1  85.7  7.1   7.1

Aztreonam ≤0.12 >16  76.3  0.6  23.1  75.6  0.6  23.7 Gentamicin 0.5 >8  78.6  0.0  21.4  78.6  0.0  21.4

Ceftriaxone ≤0.06 >8  74.4  0.0  25.6  74.4  0.0  25.6 Colistin 0.25 0.25 — — — 100.0 —   0.0

Cefepime ≤0.5 >16  77.6  5.1  17.3  75.6  3.8  20.5 Tigecycline 0.25 0.5 100.0  0.0   0.0  92.9  7.1   0.0

Meropenem 0.03 0.12  92.9  0.0   7.1  92.9  2.6   4.5 Enterobacter spp. (163)c

Levofloxacin 0.06 >4  85.0  3.8  11.2  82.5  2.5  15.0 SPR719-SPR741 0.12 0.5 — — — — — —

Gentamicin 0.25 >8  87.5  0.0  12.5  85.0  2.5  12.5 Piperacillin-tazobactam 2 >64  76.1  8.6  15.3  71.8  4.3  23.9

Colistin ≤0.5 ≤0.5 — — —  97.4 —   2.6 Aztreonam 0.25 >16  68.7  1.8  29.4  65.0  3.7  31.3

Tigecycline 0.25 1  99.4  0.6   0.0  97.4  1.9   0.6 Ceftriaxone 0.5 >8  59.5  0.6  39.9  59.5  0.6  39.9

K. pneumoniae ESBL (40) Cefepime ≤0.5 16  82.2  6.7 11.0b  76.7 11.0  12.3

SPR719-SPR741 0.06 0.25 — — — — — — Meropenem 0.03 0.12  99.4  0.0   0.6  99.4  0.6   0.0

Piperacillin-tazobactam 32 >64  45.0 15.0  40.0  40.0  5.0  55.0 Levofloxacin ≤0.03 >4  89.0  0.0  11.0  83.5  3.3  13.2

Aztreonam >16 >16   7.5  2.5  90.0   5.0  2.5  92.5 Gentamicin 0.25 1  92.3  0.0   7.7  91.2  1.1   7.7

Ceftriaxone >8 >8   0.0  0.0 100.0   0.0  0.0 100.0 Colistin ≤0.5 4 — — —  89.4  10.6

Cefepime >16 >16  12.5 20.0  67.5   7.5 12.5  80.0 Tigecycline 0.25 2 100.0  0.0   0.0c  89.6 10.4   0.0

a ESBL phenotype consisted of isolates displaying MIC values of >1 μg/mL for aztreonam, ceftazidime, and/or ceftriaxone. CRE, carbapenem-resistant Enterobacteriaceae showing MIC values of >2 μg/mL for imipenem, meropenem, and/or doripenem
b %S / %I / %R, % susceptible / % intermediate / % resistant; criteria as published by CLSI (2016) and EUCAST (2016). Interpretation for tigecycline MIC results used breakpoints approved by the US Food and Drug Administration
c Includes 14 E. aerogenes and 149 E. cloacae

Table 2 Activity of investigational SPR719 tested in 
combination with SPR741 at fixed concentration of 
8 μg/mL and comparator agents against 153 isolates 
of Acinetobacter baumannii-calcoaceticus species 
complex

Antimicrobial agent

MIC % S / % I / % Ra

50% 90% CLSI EUCAST

SPR719-SPR741 0.5 2 — — — — — —

Ampicillin-sulbactam 16 >32 37.9 14.4 47.7 — — —

Piperacillin-tazobactam >64 >64 31.6  6.6 61.8 — — —

Cefepime >16 >16 32.0 11.1 56.9 — — —

Meropenem >8 >8 39.9  0.7 59.5 39.9 4.6 55.6

Levofloxacin >4 >4 25.6  4.9 69.5 24.4 1.2 74.4

Gentamicin >8 >8 39.0  1.2 59.8 39.0 — 61.0

Colistin ≤0.5 2 94.1 —  5.9 94.1 —  5.9

Tigecycline 1 4 — — — — — —
a %S / %I / %R, % susceptible / % intermediate / % resistant; criteria as published by CLSI (2016) and EUCAST (2016)
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Figure 1 Structure of SPR719


