ASM Microbe 2017 Sunday - 162

Potentiation of Clarithromycin When Combined with a New Cationic Peptide against Gram-negative Clinical Isolates and Molecular Analysis of Macrolide Resistance Mechanisms by Next-Generation Sequencing RE MENDES¹ PR RHOMBERG¹ HK BECKER¹ AP DAVIS¹ T LISTER² A LEE¹ TR PARR JR², M VAARA³, RK FLAMM¹

Abstract

Background: A. baumannii and Enterobacteriaceae can express a diverse array of antimicrobial resistance mechanisms, which can compromise therapy. The activity of clarithromycin (CLA) combined with SPR741 was assessed against a recent collection of clinical pathogens.

Methods: A total of 134 A. baumannii and 342 Enterobacteriaceae (3 species) isolates were selected. Isolates were tested for susceptibility by CLSI methods. CLA was tested in combination with SPR741 at a fixed concentration of 8 µg/mL. Interpretation of MICs for comparators applied CLSI/EUCAST/FDA criteria. Selected isolates with CLA-SPR741 MICs of $\geq 8 \mu g/mL$ were subjected to whole genome sequencing for screening of acquired MLS_{R} resistance genes.

Results: CLA-SPR741 (MIC_{50/90}, 0.12/1 µg/mL) had the lowest MICs against *Entero*bacteriaceae (25.4% ESBL and 14.6% carbapenem-resistant [CRE]), followed by tigecycline (MIC_{50/00}, 0.25/1 μ g/mL; 94.4–99.7% susceptible) and colistin (MIC_{50/00}, $\leq 0.5/1 \ \mu g/mL; 93.2\%$ susceptible). Other agents, including meropenem had MIC_{oo} of $\geq 8 \mu g/mL$. CRE displayed CLA-SPR741 (MIC_{50/00}, 0.25/16 $\mu g/mL$) MICs higher than the susceptible counterpart (MIC_{50/90}, 0.12/1 μ g/mL). CLA-SPR741 (MIC_{50/90}, 0.12/2 μ g/mL) inhibited 96.6% of all *E. coli* or 92.9% of all ESBL-producing *E. coli* at $\leq 8 \mu g/mL$. CLA-SPR741 (MIC_{50/90}, 0.12/4 µg/mL), colistin (MIC_{50/90}, ≤0.5/1 µg/mL; 92.1% susceptible), and tigecycline (MIC_{50/90}, 0.25/1 µg/mL; 96.5–100.0% susceptible) were active against K. pneumoniae. CLA-SPR741 (MIC_{50/90}, 0.12/1 µg/mL) showed MICs 2-fold lower than tigecycline (MIC_{50/90}, 0.25/2 μ g/mL; 86.4–99.1% susceptible) against E. cloacae, whereas CLA-SPR741 (MIC_{50/90}, 1/>32 µg/mL) was less active against A. baumannii. Isolates displaying elevated CLA-SPR741 MICs had combinations of methylases (Erm) and/or inactivating enzymes (Mph).

Conclusions: CLA-SPR741 demonstrated potent activity against this recent collection of *Enterobacteriaceae*, including CRE and ESBL-producing isolates. This study also expanded the knowledge of MLS_{R} genes in gram-negative pathogens.

Introduction

- Enterobacteriaceae isolates account for 27% of health care-associated infections in the US, and a great proportion of these isolates produce extended-spectrum β-lactamases (ESBLs), which account for approximately 14% of Enterobacteriaceae
- ESBL-producing *Enterobacteriaceae* isolates have spread in the nosocomial and community settings, complicating the empiric treatment of infections caused by these organisms
- The increased frequency of ESBL-producing *Enterobacteriaceae* isolates may increase the use of more potent antimicrobial agents, including carbapenems
- Although carbapenem-resistant *Enterobacteriaceae* (CRE) isolates are relatively uncommon in the US, the number of US facilities reporting CRE has risen steadily and includes 4% of acute hospitals and 18% of long-term acute care facilities
- Organisms, such as Acinetobacter baumannii and other non-fermentative isolates can also express a diverse array of antimicrobial resistance mechanisms, which can compromise therapy
- These hard-to-treat infections have been targeted as one of the most pressing challenges in the field of infectious diseases
- SPR741 is a novel polymyxin analog that interacts with the outer membrane of gramnegative bacteria and compromises the integrity of the lipopolysaccharide
- SPR741 will increase cell permeability and enable entry of antimicrobial compounds
- This study investigated the activity of clarithromycin combined with SPR741 against a recent collection of A. baumannii and Enterobacteriaceae clinical isolates

Organism collection

Susceptibility testing

- Clarithromycin was tested in combination with SPR741 at a fixed concentration of 8 µg/mL
- Bacterial inoculum density was monitored by colony counts to assure adequate number of cells for each testing event
- MIC values were validated by concurrently testing CLSI-recommended quality control (QC) reference strains
- MIC interpretations were based on the CLSI (M100-S26) and European Committee on Antimicrobial Susceptibility Testing (EUCAST; 2016) breakpoint criteria, as available
- Tigecycline MIC breakpoints were from the US Food and Drug Administrationapproved package insert

Characterization of macrolide resistance mechanisms by next-generation sequencing

- A selection of isolates exhibiting clarithromycin-SPR741 (fixed 8 µg/mL) MIC results at ≥8 µg/mL were subjected to next-generation sequencing (NGS) to screen for acquired macrolide, lincosamide, and streptogramin B (MLS_B) resistance genes
- Selected isolates had total genomic DNA extracted by the fully automated Thermo Scientific[™] KingFisher[™] Flex Magnetic Particle Processor (Cleveland, OH, USA), which was used as input material for library construction
- DNA libraries were prepared using the Nextera[™] library construction protocol (Illumina, San Diego, CA, USA) following the manufacturer's instructions and were sequenced on a MiSeq Sequencer (JMI Laboratories, North Liberty, IA, USA)
- Assembled genomes were subjected to a proprietary software (JMI Laboratories), which paired their genomes against a curated database containing numerous resistance determinants to screen for MLS_R genes

- 47.7% (Table 2)
- mL; 93.2% susceptible; Table 3)
- respectively (Table 1)

¹JMI Laboratories, North Liberty, Iowa, USA; ²Spero Therapeutics, Cambridge, Massachusetts, USA; ³Northern Antibiotics, Espoo, Finland

Materials and Methods

• This study used geographically diverse Enterobacteriaceae (342) and A. baumannii (134) clinical isolates collected worldwide from patients with documented infections

• Isolates originated from 34 countries, including 7 countries in Asia-Pacific, 21 countries/ regions in Europe, 5 countries in Latin America, and the US

• Selected isolates were mostly responsible for urinary tract infections (70.0%), followed by bloodstream infections (10.3%), pneumonia in hospitalized patients (10.1%), skin and skin structure infections (5.5%), and other less common infections (4.2%)

Isolates were tested for susceptibility by broth microdilution following the Clinical and Laboratory Standards Institute (CLSI) M07-A10 document

Results

• Clarithromycin-SPR741 had MIC_{50} and MIC_{50} results of 1 and >32 µg/mL, respectively, when tested against *A. baumannii* clinical isolates (Tables 1 and 2)

• Only colistin (MIC_{50/90}, 1/2 μg/mL; 92.5% susceptible) showed *in vitro* activity against A. *baumannii* isolates; other comparator agents demonstrated susceptibility rates of 17.7–

• Clarithromycin-SPR741 had the lowest MIC₅₀ and MIC₉₀ results (MIC_{50/90}, 0.12/1 μ g/mL) against the entire collection of *Enterobacteriaceae* clinical isolates, followed by tigecycline (MIC_{50/90}, 0.25/1 µg/mL; 94.4–99.7% susceptible) and colistin (MIC_{50/90}, ≤0.5/1 µg/

• A total of 36.2% and 7.8% of *E. coli* isolates were categorized as ESBL and CRE,

• Clarithromycin-SPR741 inhibited 96.6% of all *E. coli*, 92.9% of ESBL-producing *E. coli*, and 88.9% of carbapenem-resistant *E. coli* at ≤8 µg/mL

• A total of 41.0% and 19.7% of *Klebsiella pneumoniae* isolates were categorized as ESBL and CRE, respectively (Table 1)

- Clarithromycin-SPR741 (MIC_{50/90}, 0.12/4 µg/mL), colistin (MIC_{50/90}, ≤0.5/1 µg/mL; 92.1% susceptible), and tigecycline ($MIC_{50/90}$, 0.25/1 µg/mL; 96.5–100.0% susceptible) were active against *K. pneumoniae* (Table 3)
- Clarithromycin-SPR741 inhibited all Enterobacter cloacae isolates at ≤8 µg/mL, including carbapenem-resistant isolates (Table 1)
- Clarithromycin-SPR741 (MIC_{50/90}, 0.12/1 μg/mL) showed MIC results 2-fold lower than tigecycline (MIC_{50/90}, 0.25/2 µg/mL; 86.4–99.1% susceptible) against *E. cloacae*; other comparator agents were not active (Table 3)
- screening of resistance mechanisms often carried the efflux-pump-[msr(E)] and phosphorylase-[*mph*] encoding genes (Table 4)

Table 1 Antimicrobial activity of investigational clarithromycin tested in combination with SPR741 at fixed concentration of 8 µg/mL against *A. baumannii* and Enterobacteriaceae clinical isolates

	Number (cumulative %) of isolates at MIC (µg/mL) of:										MIC (µg/mL)		
Organism (no. tested)	≤0.06	0.12	0.25	0.5	1	2	4	8	16	32	>32	50%	90%
<i>A. baumannii</i> (139)	12 (8.6%)	15 (19.4%)	21 (34.5%)	19 (48.2%)	9 (54.7%)	2 (56.1%)	1 (56.8%)	5 (60.4%)	3 (62.6%)	9 (69.1%)	43 (100.0%)	1	>32
Enterobacteriaceae (349)	96 (27.5%)	125 (63.3%)	37 (73.9%)	27 (81.7%)	30 (90.3%)	11 (93.4%)	4 (94.6%)	7 (96.6%)	4 (97.7%)	1 (98.0%)	7 (100.0%)	0.12	1
ESBL (90)	10 (11.1%)	15 (27.8%)	8 (36.7%)	13 (51.1%)	18 (71.1%)	6 (77.8%)	3 (81.1%)	6 (87.8%)	3 (91.1%)	1 (92.2%)	7 (100.0%)	0.5	16
CRE (56)	4 (7.1%)	20 (42.9%)	4 (50.0%)	1 (51.8%)	10 (69.6%)	4 (76.8%)	3 (82.1%)	3 (87.5%)	1 (90.0%)	0 (90.0%)	6 (100.0%)	0.25	16
<i>E. coli</i> (116)	51 (43.6%)	26 (66.4%)	4 (69.8%)	13 (81.0%)	9 (88.8%)	6 (94.0%)	1 (94.8%)	2 (96.6%)	2 (98.3%)	0 (98.3%)	2 (100.0%)	0.12	2
ESBL (42)ª	6 (14.3%)	7 (31.0%)	3 (38.1%)	8 (57.1%)	8 (76.2%)	4 (85.7%)	1 (88.1%)	2 (92.9%)	1 (95.2%)	0 (95.2%)	2 (100.0%)	0.5	8
CRE (9) ^a	1 (11.1%)	3 (44.4%)	0 (44.4%)	0 (44.4%)	3 (77.8%)	1 (88.9%)	0 (88.9%)	0 (88.9%)	0 (88.9%)	0 (88.9%)	1 (100.0%)	1	b
K. pneumoniae (117)	15 (12.8%)	45 (51.3%)	16 (65.0%)	12 (75.2%)	12 (85.5%)	3 (88.0%)	2 (90.0%)	4 (93.2%)	2 (94.9%)	1 (95.7%)	5 (100.0%)	0.12	4
ESBL (48)°	4 (8.3%)	8 (25.0%)	5 (35.4%)	5 (45.8%)	10 (66.7%)	2 (70.8%)	2 (75.0%)	4 (83.3%)	2 (87.5%)	1 (90.0%)	5 (100.0%)	1	32
CRE (23)°	2 (8.7%)	1 (13.0%)	1 (17.4%)	0 (17.4%)	7 (47.8%)	2 (56.5%)	2 (65.2%)	2 (73.9%)	1 (78.3%)	0 (78.3%)	5 (100.0%)	2	>32
<i>E. cloacae</i> (115)	30 (26.1%)	53 (72.2%)	17 (87.0%)	2 (88.7%)	9 (96.5%)	2 (98.3%)	1 (99.1%)	1 (100.0%)				0.12	1
CRE (24)°	1 (4.2%)	16 (70.8%)	3 (83.3%)	1 (87.5%)	0 (87.5%)	1 (91.7%)	1 (95.8%)	1 (100.0%)				0.12	2

^a ESBL phenotype consisted of isolates displaying MIC values of >1 µg/mL for aztreonam, ceftazidime, and/or ceftriaxone. CRE, carbapenem-resistant Enterobacteriaceae showing MIC values of >2 μ g/mL for imipenem, meropenem, and/or doripenem

^b MIC_{oo} value shown when number of isolates ≥ 10

Table 2 Activity of investigational clarithromycin tested in combination with SPR741 at fixed concentration of 8 µg/mL and comparator agents against 134 isolates of Acinetobacter baumannii-calcoaceticus species complex

				•	•			
	М	IC	% S / % I / % Rª					
Antimicrobial agent	50%	90%		CLSI			EUCAST	
Clarithromycin-SPR741	1	>32	b	b	b	b	b	b
Ampicillin-sulbactam	16	>32	35.1	16.4	48.5	b	b	b
Ceftazidime	>16	>16	32.1	1.5	66.4	b	b	b
Cefepime	>16	>16	29.1	9.7	61.2	b	b	b
Imipenem	>8	>8	34.3	3.7	61.9	34.3	9.0	56.7
Meropenem	>8	>8	32.8	0.7	66.4	32.8	7.5	59.7
Amikacin	32	>32	47.7	4.5	47.7	44.7	3.0	52.3
Colistin	1	2	92.5	b	7.5	92.5	b	7.5
Levofloxacin	>4	>4	17.7	3.2	79.0	17.7	0.0	82.3
Tigecycline	1	2	b	b	b	b	b	b

%S / %I / %R, % susceptible / % intermediate / % resistant; criteria as published by CLSI (2016) and EUCAST (2016) " represents breakpoints not available

Isolates exhibiting clarithromycin-SPR741 MIC values of ≥8 µg/mL that were selected for

Table 3 Activity of investigational clarithromycin tested in combination with SPR741 at fixed concentration of 8 µg/mL and comparator agents against *Enterobacteriaceae* clinical isolates

Organism (no. tested)/	M	С	% S / % I / % R ^a					
antimicrobial agent	50%	90%		CLSI			EUCAST	
Enterobacteriaceae (342)								
Clarithromycin-SPR741	0.12	1	b	b	b	b	b	b
Piperacillin-tazobactam	4	>64	71.2	6.2	22.6	67.4	3.9	28.8
Ceftazidime	0.5	>16	62.1	3.3	34.6	58.6	3.6	37.9
Cefepime	≤0.5	>16	66.9	7.7	25.4	63.9	8.0	28.1
Imipenem	≤0.12	4	84.6	1.2	14.2	85.8	11.3	3.0
Meropenem	≤0.12	8	85.2	1.5	13.3	86.7	7.1	6.2
Amikacin	2	8	94.1	2.4	3.6	90.5	3.6	5.9
Colistin	≤0.5	1	b	b	b	93.2	b	6.8
Levofloxacin	>4	>4	45.8	0.0	54.2	45.8	0.0	54.2
Tigecycline	0.25	1	99.7	0.3	0.0	94.4	5.3	0.3
E. <i>coli</i> (116)								
Clarithromycin-SPR741	0.12	2	b	b	b	b	b	b
Piperacillin-tazobactam	2	>64	85.1	3.5	11.4	82.5	2.6	14.9
Ceftazidime	0.25	32	71.1	7.0	21.9	64.0	7.0	28.9
Cefepime	≤0.5	>16	72.8	7.0	20.2	71.1	5.3	23.7
Imipenem	≤0.12	0.5	92.1	0.9	7.0	93.0	5.3	1.8
Meropenem	≤0.06	0.12	91.2	1.8	7.0	93.0	5.3	1.8
Amikacin	2	4	98.2	0.0	1.8	95.6	2.7	1.8
Colistin	≤0.5	≤0.5	b	b	b	97.3	b	2.7
Levofloxacin	>4	>4	35.1	0.0	64.9	35.1	0.0	64.9
Tigecycline	0.12	0.25	100.0	0.0	0.0	100.0	0.0	0.0
K. pneumoniae (115)								
Clarithromycin-SPR741	0.12	8	b	b	b	b	b	b
Piperacillin-tazobactam	4	>64	71.7	6.2	22.1	65.5	6.2	28.3
Ceftazidime	0.25	>16	65.8	1.8	32.5	64.0	1.8	34.2
Cefepime	≤0.5	>16	65.8	7.0	27.2	64.0	7.9	28.1
Imipenem	≤0.12	8	80.5	1.8	17.7	82.3	12.4	5.3
Meropenem	≤0.06	>8	81.6	1.8	16.7	83.3	6.1	10.5
Amikacin	1	32	88.6	6.1	5.3	85.1	3.5	11.4
Colistin	≤0.5	1	b	b	b	92.1	b	7.9
Levofloxacin	>4	>4	44.4	0.0	55.6	44.4	0.0	55.6
Tigecycline	0.25	1	100.0	0.0	0.0	96.5	3.5	0.0
E. cloacae (111)	0.40	4	Ŀ	h	Ŀ	h	h	Ŀ
Clarithromycin-SPR741	0.12	1	b	b	b	b	b	b
Piperacillin-tazobactam	8	>64	56.4	9.1	34.5	53.6	2.7	43.6
Amikacin	1	8	95.5	0.9	3.6	90.9	4.5	4.5
Cefepime	≤0.5	>16	61.8	9.1	29.1	56.4	10.9	32.7
Imipenem	0.25	8	80.9	0.9	18.2	81.8	16.4	1.8
Meropenem	≤0.12	8	82.7	0.9	16.4	83.6	10.0	6.4
Ceftazidime	8	>32	49.1	0.9	50.0	47.3	1.8	50.9
Colistin	≤0.5	>4	b	b	b	89.9	b	10.1
Levofloxacin	≤0.5	>4	58.8	0.0	41.2	58.8	0.0	41.2
Tigecycline	0.25	2	99.1	0.9	0.0	86.4	12.7	0.9

proved by the US Food and Drug Administration. Cetepime susceptible-dose dependent breakpoint applied and displayed under the intermediate category.

Table 4 MIC results for clarithromycin-SPR741 obtained and detected resistance genes

	_	
Organism (no. tested)	Clarithromycin-SPR741 (8 µg/mL) MIC	Resistance gen
A. baumannii (35)	8->32	<i>msr</i> (E), <i>mphE</i>
E. coli (1)	16	<i>erm</i> (B)
E. coli (1)	8	mphA
E. coli (1)	>32	ND ^a
E. coli (1)	16	ND ^a
K. pneumoniae (1)	8	<i>msr</i> (E), <i>mphE</i>
K. pneumoniae (1)	16	mphA
K. pneumoniae (1)	8	mphA
K. pneumoniae (1)	16	mphA

^a ND, no MLS_B gene detected

Contact Information: Rodrigo E. Mendes, Ph.D. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: rodrigo-mendes@jmilabs.com

Conclusions

- Clarithromycin-SPR741 demonstrated potent activity against this recent collection of multidrug-resistant (MDR) Enterobacteriaceae, including CRE and ESBL-producing
- Clarithromycin-SPR741 was less active against MDR A. baumannii clinical isolates
- Isolates displaying elevated clarithromycin-SPR741 MIC results carried MLS_R resistance genes, and this study expanded the knowledge of such genes in gramnegative pathogens
- Results presented here indicate that such combinations may be clinically relevant and warrant further development to investigate their roles as anti-gram-negative agents

Acknowledgements

This study was supported by Spero Therapeutics. JMI Laboratories received compensation fees for services in relation to preparing this presentation.

References

Boucher HW, Talbot GH, Benjamin DK, Jr., Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, for the Infectious Diseases Society of America (2013). 10 x '20 Progress development of new drugs active against Gram-negative bacilli: An update from the Infectious Diseases Society of America. *Clin Infect Dis* 56: 1685–1694.

Castanheira M, Farrell SE, Deshpande LM, Mendes RE, Jones RN (2013). Prevalence of β-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY Antimicrobial Surveillance Program (2010). Antimicrob Agents Chemother 57: 3012–3020.

Castanheira M, Mendes RE, Jones RN, Sader HS (2016). Changes in the Frequencies of β-Lactamase Genes among Enterobacteriaceae Isolates in U.S. Hospitals, 2012 to 2014: Activity of Ceftazidime-Avibactam Tested against β-Lactamase-Producing Isolates. Antimicrob Agents Chemother 60: 4770–4777.

Clinical and Laboratory Standards Institute (2015). M07-A10. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—tenth edition. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

Clinical and Laboratory Standards Institute (2016). M100-S26. Performance standards for antimicrobial susceptibility testing: 26th informational supplement. Wayne, PA, USA.

EUCAST (2016). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, January 2016. Available at: http://www.eucast.org/clinical breakpoints/. Accessed January 2016.

Tygacil (2016). Tygacil[®] Package Insert. Wyeth Pharmeceuticals. Available at www.tygacil .com. Accessed March 1, 2016.

Vaara M, Siikanen O, Apajalahti J, Fox J, Frimodt-Møller N, He H, Poudyal A, Li J, Nation RL, Vaara T (2010). A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob Agents Chemother 54: 3341–3346.

