FRIDAY 58

Meropenem-Vaborbactam Activity against Enterobacteriaceae Isolates, Including Carbapenem-Resistant and Carbapenemase-Producing Isolates, Collected in **United States (US) Hospitals During 2016**

M Castanheira, LN Woosley, MD Huband, RK Flamm JMI Laboratories, North Liberty, Iowa, USA

Amended Abstract

Background: Vaborbactam (VAB) is a cyclic boronic acid β -lactamase (BL) inhibitor that has activity against Ambler class A (including KPC) and C enzymes. This inhibitor has been combined with meropenem (MER), enhancing the activity of this carbapenem against KPC-producers. We evaluated the activity of MER-VAB against Enterobacteriaceae (ENT) clinical isolates collected in the US during 2016.

Methods: A total of 4,942 ENT isolates collected from 30 US hospitals were susceptibility (S) tested by reference broth microdilution methods for MER \pm VAB (at fixed 8 µg/mL) and comparators. CLSI and EUCAST interpretative criteria were applied. Carbapenem-resistant Enterobacteriaceae (CRE; CLSI criteria) were submitted to whole genome sequencing and *de novo* assembly and screening for carbapenemase genes using an in-house-developed pipeline

Results: MER-VAB inhibited all 4,942 ENT isolates at ≤4 µg/mL, whereas MER alone inhibited 4,899 (99.1%) of the isolates at the same concentration. MER \pm VAB (MIC_{50/90}, 0.03/0.06 µg/mL for both) were the most active agents among comparators tested (Table). All 1,937 E. coli isolates were inhibited by MER-VAB at ≤1 µg/mL, including 2 MER nonsusceptible (NS) isolates. MER-VAB inhibited all *K. pneumoniae* isolates at $\leq 2 \mu g/mL$, including 35 MER NS isolates. Among comparators, MER-VAB (MIC_{50/90}, 0.03/1 µg/mL) was the most active agent against CRE isolates (8 species), and all isolates were inhibited by this combination at $\leq 4 \mu g/mL$. CRE isolates were most susceptible to colistin (COL; 88.5%S, EUCAST criteria) and tigecycline (TIG; 96.7%S, US FDA/90.2%S, EUCAST criteria). Carbapenemase genes were detected among 56 CRE isolates and included 31 *bla*_{KPC-3}, 22 *bla*_{KPC-2},

2 bla_{SME-4} and 1 bla_{KPC-4}. MER-VAB inhibited all isolates carrying bla_{KPC} at ≤ 4 µg/mL, and these isolates displayed low S rates for several comparators.

Conclusions: MER-VAB was very active against ENT. VAB enhanced MER activity against CRE isolates that included isolates producing KPC and SME. MER-VAB is an important addition to the armamentarium of antimicrobial agents to treat CRE infections in the US.

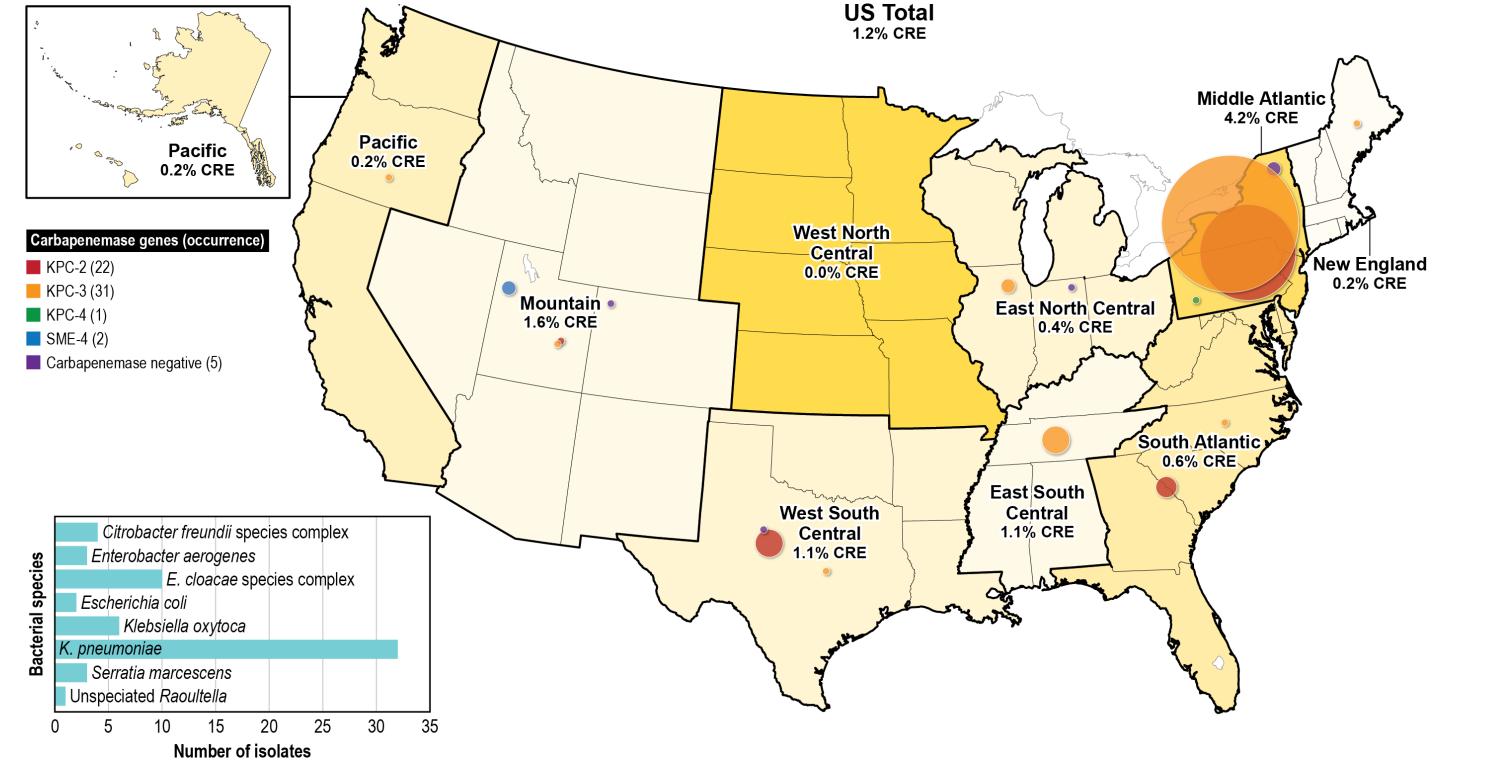
	Antimicrobial agent MIC ₅₀ /MIC ₉₀ (µg/mL):								
Organism/group (no. tested)	MER-VAB	MER	Piperacillin- tazobactam	Amikacin	COL	TIG			
Enterobacteriaceae (4,942)	0.03/0.06	0.03/0.06	2/16	2/4	0.25/>8	0.25/1			
E. coli (1,937)	≤0.015/0.03	≤0.015/0.03	2/8	2/4	0.12/0.25	0.12/0.25			
K. pneumoniae (1,068)	0.03/0.03	0.03/0.03	2/16	1/2	0.12/0.25	0.25/1			
CRE (61)	0.03/1	16/>32	>64/>64	8/32	0.25/>8	0.5/1			
KPC-producers (45)	0.03/1	16/>32	>64/>64	8/32	0.0.25/2	0.5/2			

Introduction

- Carbapenems were considered the last resource to treat serious infections caused by multidrug-resistant organisms producing β -lactamases
- These agents are hydrolyzed by carbapenemases, which include KPC serine-carbapenemases, OXA-48, and class B metallo-β-lactamases (MBLs)
- In the United States (US), isolates producing KPC enzymes have been detected in most states
- Isolates producing these enzymes are commonly detected in the New York City area and Texas
- Outside the US, KPC-producing isolates have been reported in Germany, Poland, Belgium, Hungary, Croatia, United Kingdom, Israel, China, and Brazil; KPC-producing organisms are considered endemic in Greece and Italy
- Vaborbactam (formerly RPX7009) is a cyclic boronic acid β -lactamase inhibitor that has activity against Ambler class A (including KPC) and C enzymes
- Vaborbactam has been combined with meropenem and enhances the activity of this carbapenem against KPC-producing isolates when compared to meropenem tested alone
- We evaluated the activity of meropenem-vaborbactam against 4,942 Enterobacteriaceae clinical isolates collected in the 30 US hospitals during 2016

Materials and Methods

- A total of 4,942 *Enterobacteriaceae* clinical isolates collected during 2016 from 30 hospitals located in the US were included in the study
- Isolates were limited to 1 per patient episode and were collected from bloodstream infections (n=1,319), intra-abdominal infections (n=380), pneumonia in hospitalized patients (n=1,011), skin and skin structure infections (n=730), urinary tract infections (n=1,427), and other sources (n=75)
- Species identification was confirmed, when necessary, by matrix-assisted laser desorption ionization-time of flight mass spectrometry
- Isolates were susceptibility tested against meropenem-vaborbactam (inhibitor at fixed 8 µg/mL) and comparator agents using the reference broth microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI)
- Quality control (QC) was performed according to CLSI guidelines (M100-S27), and all QC MIC results were within acceptable ranges, as published in CLSI documents
- Categorical interpretations for all comparator agents were those found in CLSI criteria in M100-S27 (2017), EUCAST breakpoint tables (version 7.0, January 2017), and/or United States Food and Drug Administration (US FDA) package inserts
- ESBL-phenotype criterion was applied for Escherichia coli, Klebsiella pneumoniae, K. oxytoca, and P. mirabilis displaying an MIC value $\geq 2 \mu g/mL$ for ceftriaxone, ceftazidime, and/or aztreonam (M100-S27)
- Carbapenem-resistant *Enterobacteriaceae* (CRE) was defined as any isolate exhibiting doripenem, imipenem, and/or meropenem MIC values at ≥2 µg/mL (*Proteus mirabilis* and indole-positive Proteeae used only meropenem due to intrinsically elevated imipenem MIC values)
- CRE isolates were submitted to whole genome sequencing on a MiSeq (Illumina, San Diego, California, US) instrument targeting a 30X coverage
- Sequences were de novo assembled and searched for the presence of acquired carbapenemases using a curated library and applying criteria of >94% sequencing identity and 40% minimum length coverage


Results

- Meropenem-vaborbactam (MIC_{50/90}, 0.03/0.06 µg/mL) was active against Enterobacteriaceae isolates, and the activity of this combination was identical to the activity of meropenem alone (MIC_{50/90}, 0.03/0.06 μ g/mL) against these isolates (Table 1)
- Meropenem-vaborbactam and meropenem were equally active against the 2 most common Enterobacteriaceae species, E. coli (1,937 isolates; MIC_{50/90}, ≤0.015/0.03 µg/mL) and *K. pneumoniae* (1,068 isolates; MIC_{50/90}, 0.03/0.03 µg/mL; Table 1)
- A total of 61 (1.2% of the *Enterobacteriaceae*) CRE were observed among US Enterobacteriaceae isolates
- CRE isolates belonged to 8 bacterial species/species complex, and K. pneumoniae accounted for 52.5% of the isolates
- CRE rates varied among US Census divisions and were higher in the
- Mid-Atlantic (4.2%) when compared to the remaining regions (0.0 to 1.6%; Figure 1)
- Against CRE isolates, the highest meropenem-vaborbactam MIC was 4 μg/mL (MIC_{50/90}, 0.03/1 μg/mL; Table 1)
- Meropenem alone (MIC_{50/90}, 16/>32 μ g/mL) displayed limited activity against CRE isolates
- CRE isolates displayed considerably higher MIC results for piperacillintazobactam (MIC_{50/90}, >64/>64 μ g/mL) and amikacin (MIC_{50/90}, 8/32 μ g/mL; Table 2)
- Colistin had reduced activity against some CRE isolates (MIC_{00} , >8 µg/mL)
- Among 61 CRE isolates, 56 (91.8% of the CRE) carried genes encoding serine-carbapenemases that included: 22 bla_{KPC-2}, 31 bla_{KPC-3}, 1 bla_{KPC-4}, 2 bla_{SME-4}
- Isolates carrying metallo- β -lactamases or oxacilinases with carbapenemase spectrum were not observed in this collection - Five isolates had negative results for the presence of carbapenemases
- Meropenem-vaborbactam (MIC_{50/90}, 0.03/1 μ g/mL) displayed activity against 56 Enterobacteriaceae isolates producing carbapenemases that included 54 isolates carrying bla_{KPC} and 2 S. marcescens carrying bla_{SME-4}
- As expected, meropenem activity was limited against carbapenemaseproducing (MIC_{50/90}, >32/>32 μ g/mL) or KPC-producing (MIC_{50/90}, >32/>32 µg/mL) Enterobacteriaceae

Results

Table 1. Distributions of the main organisms and organism groups when susceptibility tested against meropenem-vaborbactam and meropenem

		No. of isolates at MIC (μg/mL; cumulative %)											
Organism / organism group (no. of isolates)	≤0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	>
Enterobacteriaceae													
Meropenem-vaborbactam (4,942)	1,716 34.7	2,481 84.9	558 96.2	141 99.1	19 99.5	13 99.7	8 99.9	5 >99.9	1 100.0				
Meropenem (4,942)	2,218 44.9	1,789 81.1	640 94.0	176 97.6	35 98.3	8 98.5	10 98.7	10 98.8	13 99.1	12 99.4	9 99.6	11 99.8	11 100.0
Escherichia coli													
Meropenem-vaborbactam (1,937)	1,246 _{64.3}	658 98.3	26 99.6	4 99.8	1 99.9	1 99.9	1 100.0						
Meropenem (1,937)	1,576 81.4	311 97.4	34 99.2	10 99.7	1 99.7	1 99.8	2 99.9	0 99.9	1 99.9	1 100.0			
Klebsiella pneumoniae													
Meropenem-vaborbactam (1,068)	137 12.8	878 95.0	34 98.2	6 98.8	2 99.0	3 99.3	4 99.6	4 100.0					
Meropenem (1,068)	302 28.3	687 92.6	32 95.6	8 96.3	3 96.6	0 96.6	1 96.7	5 97.2	1 97.3	3 97.6	9 98.4	10 99.3	7 100.0
CRE Enterobacteriaceae													
Meropenem-vaborbactam (61)	9 14.8	25 55.7	12 75.4	1 77.0	1 78.7	2 82.0	6 91.8	4 98.4	1 100.0				
Meropenem (61)						0 0.0	1 1.6	4 8.2	13 29.5	12 49.2	9 63.9	11 82.0	11 100.0
Carbapenemase-producing Enteroba	acteriaceae	;											
Meropenem-vaborbactam (56)	9 16.1	25 60.7	12 82.1	1 83.9	1 85.7	1 87.5	4 94.6	3 100.0					
Meropenem (56)						0 0.0	1 1.8	4 8.9	12 30.4	8 44.6	9 60.7	11 80.4	11 100.0
KPC-producing Enterobacteriaceae													
Meropenem-vaborbactam (54)	9 16.7	25 63.0	10 81.5	1 83.3	1 85.2	1 87.0	4 94.4	3 100.0					
Meropenem (54)						0 0.0	1 1.9	4 9.3	12 31.5	8 46.3	9 63.0	11 83.3	9 100.0

Table 2. Activity of meropenem-vaborbactam and meropenem against the main organisms and organism groups

MIC ₅₀	MIC ₉₀		MIC ₅₀ /MIC ₉₀ (μg/mL)							
0.03	0.06	Organism/group (no. tested)	Meropenem- vaborbactam	Meropenem	Piperacillin- tazobactam	Amikacin	Colistin	Tigecycline		
0.03	0.06		Tabor buotani			,	Conotin			
≤0.015	0.03	Enterobacteriaceae (4,942)	0.03 / 0.06	0.03 / 0.06	2/16	2/4	0.25 / >8	0.25 / 1		
≤0.015	0.03									
		Escherichia coli (1,937)	≤0.015 / 0.03	≤0.015 / 0.03	2/8	2/4	0.12 / 0.25	0.12 / 0.25		
0.03	0.03									
0.03	0.03	Klebsiella pneumoniae (1,068)	0.03 / 0.03	0.03 / 0.03	2 / 16	1 / 2	0.12 / 0.25	0.25 / 1		
0.03	1		0.03 / 1	16 / >32			0.25 / >8			
16	>32	CRE Enterobacteriaceae (61)			>64 / >64	8 / 32		0.5 / 1		
0.03	1	Carbapenemase-producing Enterobacteriaceae (56)	0.03 / 1	16 / >32	>64 / >64	8 / 32	0.25 / >8	0.5 / 2		
16	>32									
0.03	1	KPC-producing Enterobacteriaceae (54)	0.03 /1	16 / >32	>64 / >64	8 / 32	0.0.25 / 2	0.5 / 2		
16	>32									

Contact Information: Mariana Castanheira, PhD **JMI** Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: mariana-castanheira@jmilabs.com

Conclusions

- >32 µg/mL
- by resistant organisms

Acknowledgements

This project has been funded in part by The Medicines Company and the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority (BARDA), under Contract No. HHSO100201400002 with Rempex Pharmaceuticals, a wholly-owned subsidiary of The Medicines Company.

References

Castanheira M, Rhomberg PR, Flamm RK, Jones RN (2016). Effect of the beta-Lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 60: 5454-5458.

Clinical and Laboratory Standards Institute (2017). M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. Wayne, PA: CLSI.

EUCAST (2017). Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0, January 2017.

Available at: http://www.eucast.org/clinical_breakpoints/. Accessed January 2017.

Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, King P, Tsivkovski R, Sun D, Sabet M, Tarazi Z, Clifton MC, Atkins K, Raymond A, Potts KT, Abendroth J, Boyer SH, Loutit JS, Morgan EE, Durso S, Dudley MN (2015). Discovery of a cyclic boronic acid beta-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem 58: 3682-3692.

Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, Landman D (2015). Activity of meropenem combined with RPX7009, a novel beta-lactamase inhibitor. against gram-negative clinical isolates in New York City. Antimicrob Agents Chemother 59: 4856–4860.

 Meropenem-vaborbactam displayed activity against Enterobacteriaceae isolates collected from US hospitals during 2016

- The highest meropenem-vaborbactam MIC result was 4 µg/mL, and this collection included 61 CRE isolates displaying meropenem MIC values ranging from 1 to

• The activity of meropenem-vaborbactam against CRE isolates that are usually associated to multidrug-resistant phenotypes highlights the importance of this compound in the armamentarium against infections caused