Comparison of the VITEK2 Advanced Expert System Phenotyping and Genetic Characterization of *β*-Lactamase Genes for **Enterobacterales Isolates from North and Latin America**

Cecilia G Carvalhaes, Dee Shortridge, Leah N Woosley, Katie M Simpson, Mariana Castanheira

JMI Laboratories, North Liberty, IA, USA

Introduction

- β-Lactam agents are commonly used as the primary therapeutic option for serious infections caused by Enterobacterales isolates.
- The rapid detection of β -lactam resistant phenotypes such as transferable AmpC (tAmpC), ESBL, and carbapenemase is important for appropriate antimicrobial therapy administration and infection control measures.
- The VITEK2 Advanced Expert System (AES) provides standardized phenotypic interpretation of MIC results based on an extensive database of MIC distributions and prevalent resistance mechanisms in Enterobacterales isolates.
- In this study, the AES resistant phenotypes for β -lactams were compared to the molecular characterization of 488 Enterobacterales from North and Latin America.

Materials and Methods

Bacterial isolates

- Among the 488 Enterobacterales isolates (1/patient), 384 were collected from medical centers located in North America (274 isolates from 61 centers in the US) or Latin America (110 isolates from 11 centers in 6 countries) as part of the SENTRY Antimicrobial Surveillance Program during 2015–2019 (Figure 1).
- Additionally, 104 molecularly characterized isolates from the CDC & FDA Antibiotic Resistance Bank were included.
- Klebsiella pneumoniae (34.8%) was the most common organism, followed by Escherichia coli (26.6%), Enterobacter cloacae species complex (13.3%), and other Enterobacterales (25.2%; Figure 2).

Susceptibility testing

- Broth microdilution (BMD) susceptibility testing was conducted according to CLSI M07 guidelines using frozen-form 96-well plates produced by JMI Laboratories.
- All isolates were tested by the VITEK 2 system using N802 and XN15 AST cards. MIC results were generated using the Advanced Expert System (AES) in the Global Clinical and Laboratory Studies Institute (CLSI)-based + Natural Resistance (NATR) mode and reviewed by a microbiologist.
- CLSI clinical breakpoints were applied.
- Whole genome sequencing (WGS) was performed on isolates that met the following criteria by BMD:
- E. coli and K. pneumoniae isolates displaying MIC values $\geq 2 \text{ mg/L}$ for at least 2 of the following β -lactams: aztreonam, cefepime, ceftazidime, or ceftriaxone; and/or

AES assessment

- by WGS, where:
- condition
- condition

Results

- (Figure 3).

- by AES (**Table 1**).

Enterobacterales isolates displaying meropenem and/or imipenem MIC results >1 mg/L.

Enterobacterales isolates that did not meet the criteria for molecular characterization were considered wildtype.

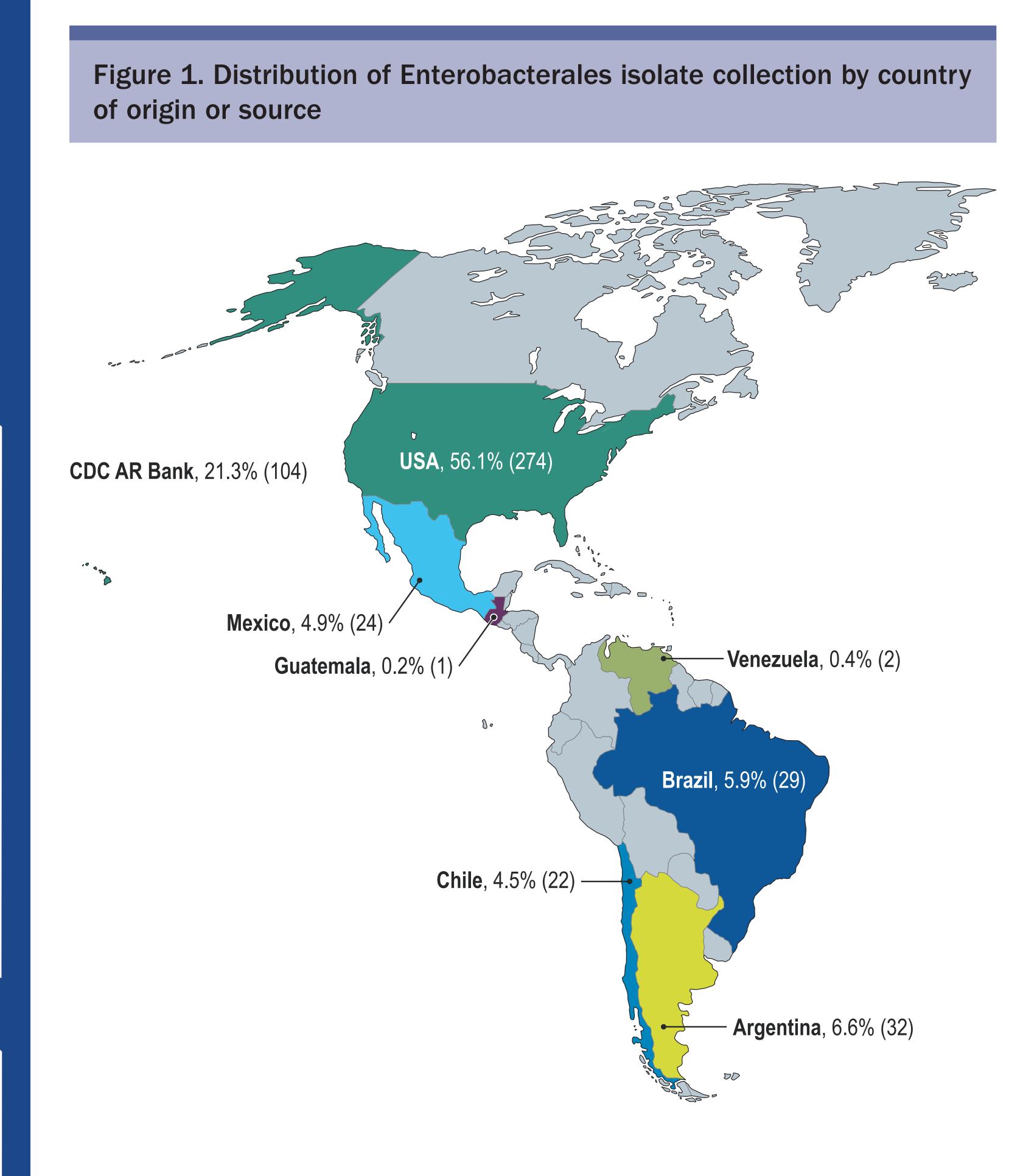
The accuracy, sensitivity, and specificity of AES report for β -lactam resistant phenotype were compared to resistant genotypes confirmed

Accuracy rate was calculated as: the number of AES and molecular categories in agreement/total number of AES reports × 100%

Sensitivity: ability of AES report to correctly identify a truly positive

Specificity: ability of AES report to correctly identify a truly negative

The AES provided phenotypic reports for 447/488 (91.6%) Enterobacterales isolates. The remaining 41 isolates were not a match to any AES phenotype.


Among the 447 Enterobacterales isolates, 191 (42.7%) were characterized by WGS as isolates harboring at least 1 carbapenemase gene, 107 (23.9%) as harboring ESBL genes, 28 (6.3%) as harboring tAmpC genes, and 121 (27.1%) as wildtype.

• Overall, the AES report was accurate for 429/447 isolates (96.0%). The AES accurately reported carbapenemase, ESBL, and tAmpC phenotypes for 93.5%, 96.4%, and 98.7% of isolates, respectively

All wildtype isolates were correctly categorized by the AES as either wildtype or displaying an acquired penicillinase.

The AES sensitivity/specificity rates were 96.3%/91.4%, 94.4%/97.1%, 82.1%/99.8%, and 100%/98.8% for reporting carbapenemase, ESBL, tAmpC, and wildtype, respectively (**Figure 3**). • Only 18 isolates harboring carbapenemase (7 total; 3 KPC, 2 MBL, 2 OXA-48), ESBL (6), and tAmpC (5) genes were not correctly detected

Among the 41 isolates for which an AES phenotype was not reported, 20 harbored a carbapenemase, 15 an ESBL, 4 a tAmpC gene, and 2 displayed a wildtype genotype.

Table 1. AES phenotype and WGS genotype discordances

	WGS genotype				
AES report	ESBL	Carba- penemase	tAmpC	Wild- type	Total
Acquired penicillinase, wild (cephalosporinase)		2	2		4
Carbapenemase (+ or – ESBL)	4				4
ESBL + impermeability (cephamycins), ESBL		5	3		8
AmpC	2				2
Total	6	7	5	0	18

Figure 2. Characterization of Enterobacterales isolates by species and β-lactam resistant genotype

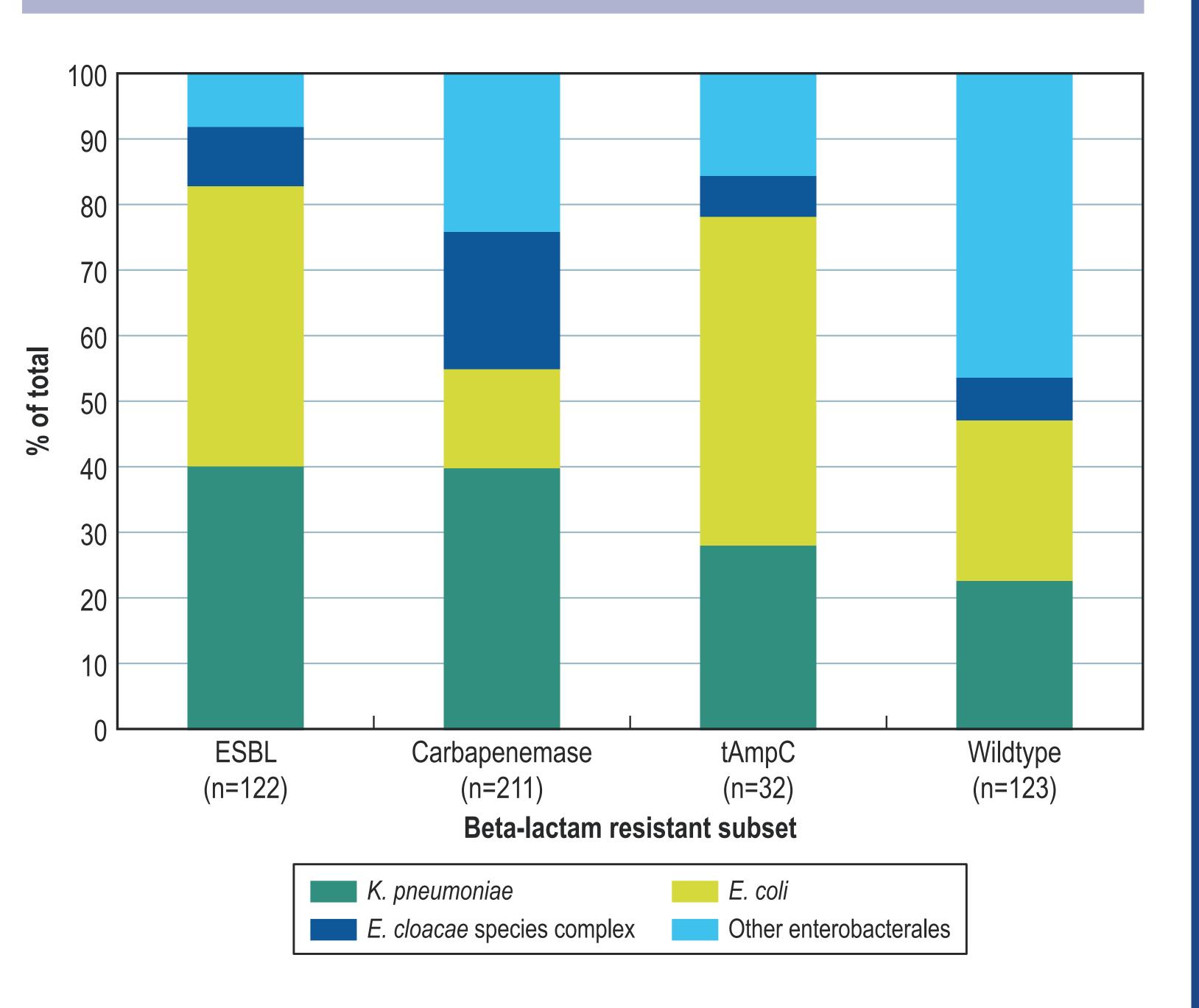
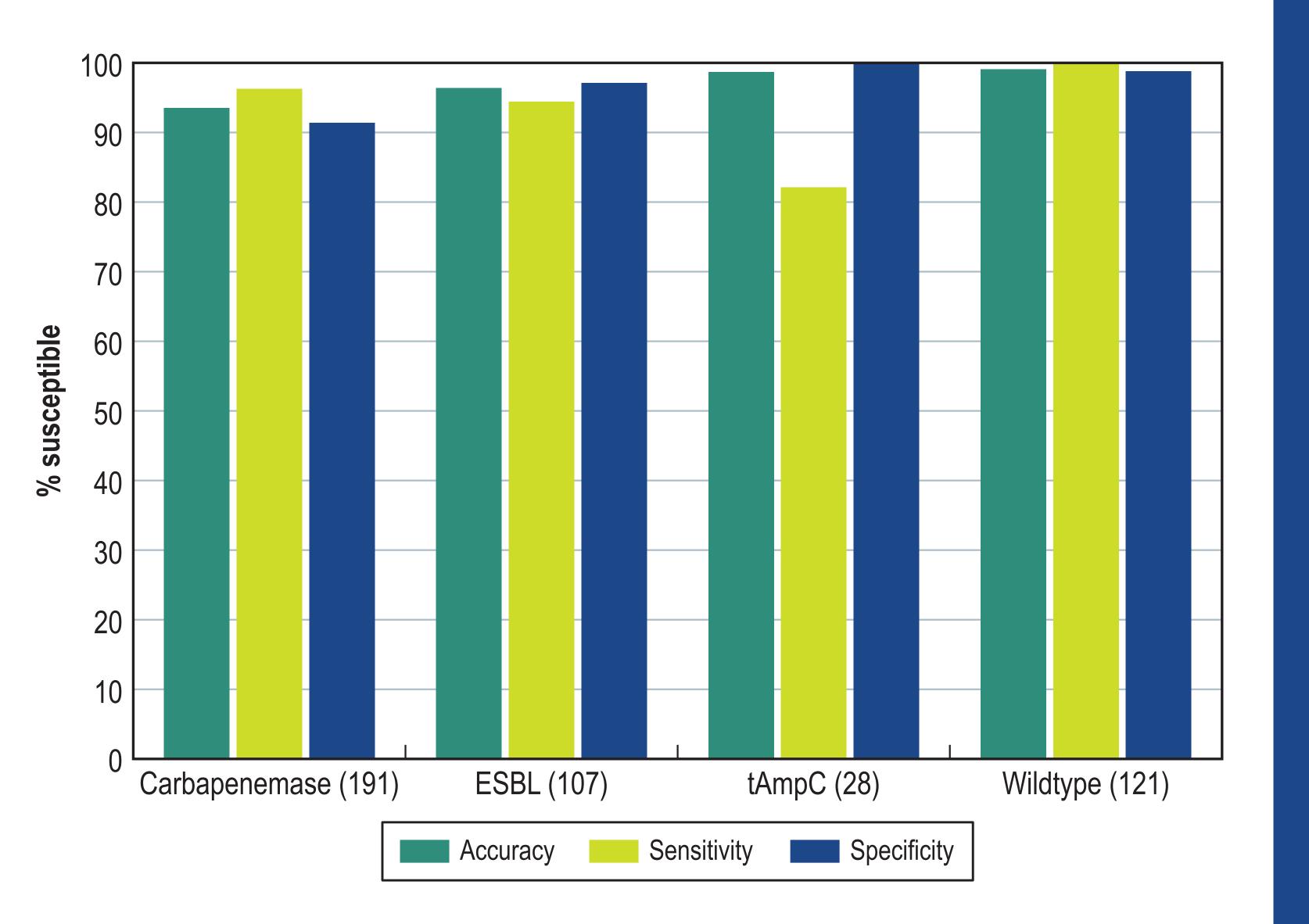



Figure 3. Accuracy, sensitivity, and specificity rates for AES β-lactam phenotype report compared to β -lactam resistant genotype

Conclusions

- VITEK2 AES correctly displayed resistance phenotypes for 96.0% (429/447) of isolates from this challenging collection of Enterobacterales harboring a variety of β -lactamase genes.
- The AES phenotypic report can be accurately applied as a rapid tool for the detection of resistance mechanisms among Enterobacterales, which could significantly aid future antimicrobial stewardship initiatives and improve patient care.

Acknowledgements

This study at JMI Laboratories was supported by bioMerieux (Durham, USA). JMI Laboratories received compensation fees for services in relation to preparing the poster, which was funded by bioMerieux.

References

VITEK2 advanced expert system to identify beta-lactam phenotypes in isolates of Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol. 2000 Feb;38(2):570-4.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: eleventh edition. Wayne, PA.

Clinical and Laboratory Standards Institute (2020). M100Ed30. Performance standards for antimicrobial susceptibility testing: 30th informational supplement. Wayne, PA.

Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009 Jan;22(1):161-82.

Castanheira M, Doyle TB, Kantro V, Mendes RE, Shortridge D. Meropenem-Vaborbactam Activity against Carbapenem-Resistant Enterobacterales Isolates Collected in U.S. Hospitals during 2016 to 2018. Antimicrob Agents Chemother. 2020 Jan 27;64(2):e01951-19.

Contact

Cecilia Carvalhaes, MD, PhD, D(ABMM) JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: cecilia-carvalhaes@jmilabs.com

To obtain a PDF of this poster: Scan the QR code or visit https://www.jmi labs.com/data/posters/ASMMicrobe2022 _Vitek2_Americas