Frequency of Spontaneous Resistance for Gepotidacin and Levofloxacin Against a Collection of Gram-Negative and Gram-Positive Organisms via Single-Step Mutational Analysis

SJR Arends¹, J West², J Thompson¹, H Kimbrough¹, A Davis¹, N Scangarella-Oman², M Castanheira¹

¹JMI Laboratories, North Liberty, Iowa, USA

²GlaxoSmithKline, Collegeville, Pennsylvania, USA

Introduction

Gepotidacin (GSK2140944) is a novel, bactericidal, first in class triazaacenaphthylene antibiotic in clinical development for the treatment of gonorrhea and uncomplicated urinary tract infection (acute cystitis).

Gepotidacin selectively inhibits bacterial DNA replication by a distinct mechanism of action, which confers in vitro activity against most strains of target pathogens, such as E. coli, S. saprophyticus and N. gonorrhoeae, including those resistant to current antibiotics.

The purpose of this study was to evaluate the potential of gepotidacin and levofloxacin to select for spontaneous resistance in certain gram-negative and gram-positive bacterial isolates. Mutants recovered from gepotidacin selection were characterized by whole genome sequencing and single nucleotide polymorphism analysis.

Materials and Methods

The activities of gepotidacin and levofloxacin were evaluated against 3 clinical isolates from each of the following species: Citrobacter freundii, Enterobacter cloacae species complex, Klebsiella aerogenes, Klebsiella pneumoniae, Proteus mirabilis, Providencia rettgeri, Enterococcus faecalis, and Staphylococcus saprophyticus.

All isolates were collected in 2019.

The organisms tested included a mixture of wild-type, extended-spectrum, beta-lactamaseproducing, and fluoroquinolone-resistant phenotypes.

Baseline agar dilution MIC values were determined in triplicate using Clinical and Laboratory Standards Institute (CLSI) M07Ed11 (2018) methods using Mueller-Hinton agar.

Spontaneous resistance frequencies were determined by plating bacterial suspensions on Mueller-Hinton agar containing gepotidacin or levofloxacin at 4x and 10x their respective MICs. After 48 hrs ambient incubation at 35°C, resulting colonies were passaged twice on drug-free media. Resistant colonies were confirmed (≥4-fold increase in MIC) and assessed for cross resistance to azithromycin, aztreonam, ceftazidime, levofloxacin, linezolid, meropenem, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin by broth microdilution MIC testing.

For Whole Genome Sequencing (WGS), gepotidacin resistant mutants and their corresponding parent isolates were sequenced using a combination of short- (Nextera XT™/ Illumina) and longread (Qiagen Genomic Tip 100 / MinION Nanopore) sequencing methods. Each sample set was assembled independently using *de novo* assembler SPAdes 3.13.0. The WGS of select mutants enabled characterization of the target genes (gyrA/B, parC/E, and grIA/B) as well as single nucleotide polymorphisms (SNPs).

Disclosures

This study at JMI Laboratories was supported by GlaxoSmithKline. JMI Laboratories received compensation fees for services in relation to preparing the poster.

No spontaneous resistance to gepotidacin was observed at 10x MIC concentrations.

Mutant frequencies ranged from 6.1×10^{-8} to $< 2.5 \times 10^{-10}$ at $4 \times MIC$ gepotidacin concentrations.

Reduced susceptibility to other antibiotics was seen for select *P. mirabilis*, *K.* pneumoniae, P. rettgeri and E. cloacae mutants obtained from gepotidacin 4x MIC plates. These were not target-based mutants.

Target-based mutations were only observed among *E. faecalis* mutants from gepotidacin 4x MIC plates.

For Enterobacterales selected on gepotidacin 4x MIC plates, mutations among potential efflux modulating transcriptional regulators were observed.

	Range of Mutant frequencies with:				
	Gepotidacin at	Gepotidacin at	Levofloxacin at	Levofloxacin at	
Organism (n)	4X MIC		4X MIC		
C. freundii (3)	2.7x10 ⁻⁸ to <5.0x10 ⁻⁹	<5.4x10 ⁻⁹ to <8.3x10 ⁻¹⁰	<9.2x10 ⁻⁹ to <4.5x10 ⁻¹⁰	<8.3x10 ⁻¹⁰ to <4.5x10 ⁻¹⁰	
E. cloacae sc (3)	6.1x10 ⁻⁸ to <2.5x10 ⁻¹⁰	<6.5x10 ⁻¹⁰ to <2.5x10 ⁻¹⁰	5.8x10 ⁻¹⁰ to <2.5x10 ⁻¹⁰	<6.5x10 ⁻¹⁰ to <2.5x10 ⁻¹⁰	
K. aerogenes (3)	<4.7x10 ⁻¹⁰ to <3.7x10 ⁻¹⁰	<4.7x10 ⁻¹⁰ to <3.7x10 ⁻¹⁰	5.9x10 ⁻⁹ to 4.0x10 ⁻¹⁰	<4.7x10 ⁻¹⁰ to <3.7x10 ⁻¹⁰	
K. pneumoniae (3)	2.7x10 ⁻⁸ to <6.6x10 ⁻¹⁰	<5.5x10 ⁻⁹ to <5.7x10 ⁻¹⁰	2.8x10 ⁻⁸ to <5.0x10 ⁻¹⁰	1.4x10 ⁻⁸ to <5.0x10 ⁻¹⁰	
P. mirabilis (3)	7.1x10 ⁻¹⁰ to <5.4x10 ⁻¹⁰	<7.1x10 ⁻¹⁰ to <5.4x10 ⁻¹⁰	<7.1x10 ⁻¹⁰ to <5.4x10 ⁻¹⁰	<7.1x10 ⁻¹⁰ to <5.4x10 ⁻¹⁰	
P. rettgeri (3)	7.8x10 ⁻⁹ to 3.5x10 ⁻⁹	<5.4x10 ⁻¹⁰ to <4.3x10 ⁻¹⁰	5.2x10 ⁻⁹ to <4.6x10 ⁻¹⁰	<5.4x10 ⁻¹⁰ to <4.3x10 ⁻¹⁰	
E. faecalis (3)	1.7x10 ⁻⁸ to <3.2x10 ⁻¹⁰	<8.3x10 ⁻⁹ to <3.2x10 ⁻¹⁰	<8.3x10 ⁻⁹ to <3.2x10 ⁻¹⁰	<7.6x10 ⁻¹⁰ to <3.2x10 ⁻¹⁰	
S. saprophyticus (3)	<9.2x10 ⁻¹⁰ to <5.9x10 ⁻¹⁰				
sc, species complex					

Table 1 Summary of gepotidacin and levofloxacin mutation frequencies by species

Poster #2361

ASM Microbe 2022 June 9-13, 2022, Washington, DC

Gepotidacin did not select for any mutants on 10x MIC plates for any of the organisms tested, translating to spontaneous resistance frequencies ranging from <8.3x10⁻⁹ to <2.5x10⁻¹⁰ (Table 1). On gepotidacin 4x MIC plates, mutant frequencies ranged from 6.1x10⁻⁸ to <2.5x10⁻¹⁰ for all species (Table 1).

Levofloxacin mutant frequencies ranged from 1.4 x10⁻⁸ to <2.5x10⁻¹⁰ on 10x MIC plates and 2.8×10^{-8} to <2.5 \times 10^{-10} on 4x MIC plates (Table 1).

Reduced susceptibility to levofloxacin (\geq 4-fold increases in MIC) was observed for 4/10 E. cloacae species complex mutants tested, 3/14 K. pneumoniae mutants, 1/1 P. mirabilis mutant, and 30/31 P. rettgeri gepotidacin-selected mutants (data not shown).

WGS revealed target-based mutations (GyrA, A₃₄V and GyrB, D₄₃₇V) among 2 *E. faecalis* mutants (Table 2). No other gepotidacin target-based mutations were observed.

Among the gram-negative isolates sequenced, SNPs within transcriptional regulators (SoxR, TetR/AcrR family, and LysR family) and the rpoC gene were detected (Table 2).

Table 2 Single nucleotide polymorphisms detected among select mutants recovered from gepotidacin frequency of resistance studies

Isolate	Species	SNP or location	Gene(s)
135	E. faecalis	D ₄₃₇ V	DNA gyrase subunit B - <i>gyrB</i>
136	E. faecalis	A ₃₄ V	DNA gyrase subunit A - gyrA
		A ₂₈₀ E	adenylosuccinate lyase - <i>purB</i>
162	C. freundii	upstream	Endochitinase
		R ₁₀₁ P	F0F1 ATP synthase subunit alpha - atpA
137	E. cloacae	upstream	RomA family MBL fold metallo-hydrolase
143	E. cloacae	$\Delta T_{36}E_{37}A_{38}G_{39}V_{40}A_{41}$	TetR/AcrR family transcriptional regulator
210 <i>H</i>	K. pneumoniae	downstream	IS630 family transposase
		R ₄₃₁ P	DNA-directed RNA polymerase subunit beta - rpoC
213 k	K. pneumoniae	downstream	IS630 family transposase
		K ₃₃₄ Q	DNA-directed RNA polymerase subunit beta - rpoC
224 <i>P.</i>	P. mirabilis	between	Hypothetical and uncharacterized protein
		I ₁₅₈ F	MFS transporter
		R ₂₀ L	redox-sensitive transcriptional activator soxR
		upstream	TetR/AcrR family transcriptional regulator
		upstream	Hypothetical protein
174	P. rettgeri	upstream	response regulator - <i>uvrY</i>
		D ₁₁₇ E, E ₁₁₈ V, N ₁₂₁ I	LysR family transcriptional regulator
		upstream	Ubiquinone biosynthesis hydroxylase, ubiH
		downstream	type II secretion system F family protein
		downstream	DNA gyrase subunit B - <i>gyrB</i>
		upstream	Homoserine trans-succinylase
		R33C	Redox-sensitive transcriptional activator - soxR
		upstream	Multidrug resistant protein - mdtN
		upstream	Formate dehydrogenase-O major subunit

References

- Bayliss SC, Hunt VL, Yokoyama M, Thorpe HA and Feil EJ.(2017) The use of Oxford Nanopore native barcoding for complete genome assembly. Gigascience 6: 1-6.
- CLSI. M07ED11 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: eleventh edition. Wayne, PA, Clinical and Laboratory Standards Institute, 2018.
- CLSI. M100Ed31. Performance standards for antimicrobial susceptibility testing: 31st informational supplement. Wayne, PA, Clinical and Laboratory Standards Institute, 2021.

Contact

S. J. Rvan Arends, Ph.D. **JMI** Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319)665-3371 Email: ryan-arends@jmilabs.com