Poster #P1271

ECCMID 2017

D Shortridge JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: dee-shortridge@jmilabs.com

Antimicrobial Activity of Ceftolozane-Tazobactam Tested against Contemporary (2014-2016) Gram-Negative Organisms Collected from European Medical Centres

Revised Abstract

Background: Ceftolozane-tazobactam (C-T) is an antibacterial combination consisting of a novel antipseudomonal cephalosporin and a β -lactamase inhibitor. C-T was approved by the US Food and Drug Administration in 2014 and by the European Medicine Agency in 2015 to treat complicated urinary tract infections, acute pyelonephritis, and complicated intra-abdominal infections. The Program to Assess Ceftolozane-Tazobactam Susceptibility (PACTS) monitors C-T resistance among gram-negative isolates worldwide.

Methods and Materials: A total of 18,285 gram-negative bacilli (GNB), including 13,289 Enterobacteriaceae (ENT) and 3,284 Pseudomonas aeruginosa (PSA), were collected in 2014 through 2016 from 42 European hospitals and tested for susceptibility by CLSI broth microdilution method in a central monitoring laboratory (JMI Laboratories). Other antibiotics tested were amikacin (AMK), cefepime (FEP), ceftazidime (CAZ), colistin (COL), levofloxacin (LVX), meropenem (MER), and piperacillin-tazobactam (TZP). The laboratory identified carbapenem-resistant ENT (CRE; resistant to doripenem, imipenem, or meropenem); extended-spectrum beta-lactamase (ESBL, non-CRE); ceftazidime-nonsusceptible (CAZ-NS) PSA; meropenem-nonsusceptible (MER-NS) PSA; multidrug-resistant (MDR); and extensively drug-resistant (XDR) phenotypes. EUCAST 2017 clinical breakpoints were applied.

Results: C-T inhibited 88.4% of ENT at the susceptible (S) breakpoint of $\leq 1 \text{ mg/L}$. ENT isolates were 95.8%S to AMK, 79.4%S to FEP, 76.1%S to CAZ, 82.1%S to COL, 72.9%S to LVX, 97.1%S to MER, and 81.6%S to TZP. A total of 2,308 ENT isolates had an ESBL (non-CRE) phenotype: 71.8%S to C-T, 89.6%S to AMK, 13.6% S to FEP, 10.0% S to CAZ, 93.4% S to COL, 27.6% S to LVX, 99.4% S to MER, and 53.5%S to TZP. A total of 389 (2.9%) ENT isolates were CRE; <5% were S to any beta-lactam tested, 37.3% were S to AMK, and 66.0% were S to COL. Of the 2,467 (18.6%) MDR ENT isolates, AMK (78.5%S), COL (73.1%S), and MER (84.4%S) were the most active, 51.1% were S to C-T, and the remaining comparators were $\leq 30.6\%$ S.

For PSA, C-T inhibited 90.1% at the S breakpoint of ≤4 mg/L. PSA isolates were 83.4%S to AMK, 79.7%S to FEP, 75.1%S to CAZ, 99.2%S to COL, 61.9%S to LVX, 72.3%S to MER, and 72.5%S to TZP. A total of 1,040 PSA were MDR (31.7%). The most active drugs against MDR PSA were COL (98.8% S) and C-T (69.6%S), 51.3% were S to AMK, and the remaining drugs were \leq 40.3%S.

Conclusions: C-T demonstrated potent activity against a large collection of contemporary GNB European isolates. For ENT, AMK and MER were the most active followed by C-T. AMK, COL, and MER were more active against non-CRE ESBL and CRE. For PSA, including MDR isolates, C-T was the most potent antimicrobial agent tested except COL.

Organism	Number of	% susceptible ^a														
antibacterial agent	isolates	C-T	FEP	CAZ	MER	TZP	LVX	AMK	COL							
ENT	13,289	88.4	79.4	76.1	97.1	81.6	72.9	95.8	82.1							
ESBL (non-CRE)	2,308	71.8	13.6	10.0	99.4	53.5	27.6	89.6	93.4							
CRE	389	3.1	3.3	5.4	4.6	1.8	8.8	37.3	66.0							
MDR	2,467	51.1	22.6	17.7	84.4	30.6	15.2	78.5	73.1							
XDR	478	10.5	4.2	4.4	31.6	8.8	2.1	40.4	56.3							
PSA	3,284	90.1	79.7	75.1	72.3	72.5	61.9	83.4	99.2							
MDR	1,040	69.6	40.3	33.3	22.6	23.8	9.9	51.3	98.8							
XDR	639	52.1	18.2	13.1	8.3	4.5	1.9	31.8	98.1							
CAZ-NS	817	62.2	28.8	0.0	31.8	9.2	22.3	52.0	98.9							
MER-NS	909	66.2	42.5	38.7	0.0	29.6	18.9	50.8	98.9							

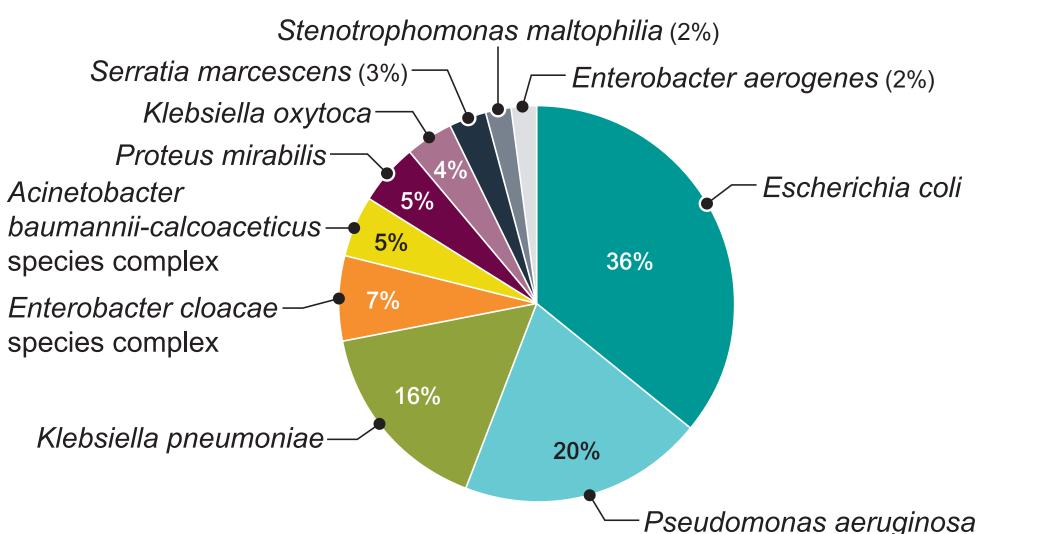
- Porin deficiency has little effect on ceftolozane
- As with other oxyimino-aminothiazolyl cephalosporins, however, ceftolozane's activity can be compromised in bacteria producing extended-spectrum β -lactamases (ESBLs), stably derepressed AmpC β-lactamases, and carbapenemases
- Tazobactam, a penicillanic acid sulfone, is a well-established β-lactamase inhibitor that extends the β -lactam agent spectrum
- Ceftolozane-tazobactam (C-T) was approved by the US Food and Drug Administration in 2014 and by the European Medicine Agency in 2015 to treat complicated urinary tract infections, acute pyelonephritis, and complicated intra-abdominal infections when combined with metronidazole • Currently a phase 3 study for treatment of hospital-associated/ventilator-associated pneumonia is underway
- The Program to Assess Ceftolozane-Tazobactam Susceptibility (PACTS) monitors C-T resistance among gram-negative (GN) isolates worldwide

- A total of 18,285 gram-negative bacilli (GNB), including 13,289 Enterobacteriaceae (ENT) and 3,284 *Pseudomonas aeruginosa* (PSA), were collected from 2014 through 2016 from 42 European hospitals and tested for susceptibility against ceftolozane-tazobactam (C-T) by CLSI broth microdilution method in a central monitoring laboratory (JMI Laboratories)
- Other antibiotics tested were amikacin (AMK), cefepime (FEP), ceftazidime (CAZ), colistin (COL), levofloxacin (LVX), meropenem (MER), and piperacillin-tazobactam (TZP)
- The laboratory identified resistance phenotypes that included carbapenem-resistant ENT (CRE), which were resistant to doripenem, imipenem, and/or meropenem; extended-spectrum beta-lactamase (ESBL, non-CRE); ceftazidime-nonsusceptible (CAZ-NS) PSA; meropenemnonsusceptible (MER-NS) PSA; multidrug-resistant (MDR); and extensively drug-resistant (XDR)
- Classifications were based on the following recommended parameters:
- MDR = nonsusceptible (NS) to at least 3 antimicrobial classes¹
- XDR = susceptible (S) to 2 or fewer antimicrobial classes¹
- ESBL isolates analyzed were non-carbapenem resistant (non-CRE ESBL), because ESBL phenotype may also include carbapenemase-producing ENT • ESBL criteria used were according to CLSI M100²
- EUCAST (2017)³ clinical breakpoints were applied • For C-T, ENT breakpoints are ≤1.0 S / >1.0 resistant (R), and *Pseudomonas* spp. breakpoints are ≤4.0 S / >4.0 R
- CLSI (2017)² C-T breakpoints for ENT are \leq 2.0 mg/L S, 4.0 mg/L intermediate (I), and \geq 8.0 mg/L R, and *Pseudomonas* spp. C-T breakpoints are ≤4.0 mg/L S, 8.0 mg/L I, and ≥16.0 mg/L R
- The 10 most frequently isolated GN species in this study are shown in Figure 1 • The top 4 species, Escherichia coli (EC), PSA, Klebsiella pneumoniae (KP), and Enterobacter cloacae complex accounted for 79% of the isolates
- The infection types included in this study and the most common GN species isolated from each are shown in Table 1
- EC was the most frequent isolate from bloodstream infections, intra-abdominal infections. and urinary tract infections, and PSA was the most common isolate from pneumonia in hospitalized patients and skin and soft tissue infections
- The % susceptible^{2,3} MIC₅₀ and MIC₉₀ for C-T and antimicrobial comparators are shown in Table 2 for all organism groups and resistant phenotypes examined in this study • The C-T MIC distributions for the 4 most common ENT are shown in Figure 2

^a EUCAST (2017)

Introduction

 Ceftolozane is a novel oxyimino-aminothiazolyl cephalosporin with potent activity against Enterobacteriaceae (similar to other oxyimino-aminothiazolyl cephalosporins) and has demonstrated greater activity than ceftazidime against Pseudomonas aeruginosa • Ceftolozane maintains its stability against many *P. aeruginosa* resistance mechanisms, including AmpC hyperproduction and efflux mechanisms


Materials and Methods

Results

Table 1 Most common infection types in PACTS (2014-2016) and top 4 GN species isolated from each

Infection type/species	Number of isolates
Bloodstream infection	3,986
Enterobacter cloacae complex	257
Escherichia coli	2,292
Klebsiella pneumoniae	894
Pseudomonas aeruginosa	543
Intra-abdominal infection	1,065
Enterobacter cloacae complex	89
Escherichia coli	644
Klebsiella pneumoniae	197
Pseudomonas aeruginosa	135
Pneumonia in hospitalized patients	3,235
Acinetobacter baumannii-calcoaceticus species complex	453
Escherichia coli	619
Klebsiella pneumoniae	705
Pseudomonas aeruginosa	1,458
Skin and skin structure infection	2,286
Enterobacter cloacae	303
Escherichia coli	772
Klebsiella pneumoniae	358
Pseudomonas aeruginosa	853
Urinary tract infection	2,596
Escherichia coli	1,680
Klebsiella pneumoniae	478
Proteus mirabilis	188
Pseudomonas aeruginosa	250

Figure 1 Top 10 species isolated from 42 European hospitals in PACTS (2014-2016)

- For ENT, C-T inhibited 88.4% at the S breakpoint of ≤1 mg/L
- ENT isolates were 95.8%S to AMK, 79.4%S to FEP, 76.1%S to CAZ, 82.1%S to COL, 72.9%S to LVX. 97.1%S to MER. and 81.6%S to TZP
- A total of 2,308 isolates had an ESBL (non-CRE) phenotype: 71.8%S to C-T, 89.6%S to AMK, 13.6%S to FEP, 10.0%S to CAZ, 93.4%S to COL, 27.6%S to LVX, 99.4%S to MER, and 53.5%S to TZP
- A total of 389 (2.9%) ENT isolates were CRE. For CRE <5.4% were S to any beta-lactam tested, 37.3% were S to AMK, and 66.0% were S to COL
- most active; 51.1% were S to C-T; and the remaining comparators were ≤31%S
- In 2,467 (18.6%) MDR isolates, AMK (78.5%S), COL (73.1%S), and MER (84.4%S) were the • For PSA, C-T inhibited 90.1% at the S breakpoint of $\leq 4 \text{ mg/L}$
- PSA isolates were 83.4%S to AMK, 79.7%S to FEP, 75.1%S to CAZ, 99.2%S to COL, 61.9%S to LVX, 72.3%S to MER, and 72.5%S to TZP

Table 2 Activi	ty of	C-T	and con	nparator	rs against	organisn	n gro	oups and	d resista	nt phenotypes	; in F	2
	MIC	MIC	CLSIª	EUCAST ^a		MIC	MIC	CLSI ^a	EUCAST ^a		MIC	

	MIC	MIC	CL	Slª	EUC	CAST ^a		MIC	MIC	CLSI	E	UCAST ^a		MIC	MIC.	CLS	SIª	EUCAST ^a		MIC	MIC.	CL	SIª	EUCA	\ST ^a		MIC	MIC	CLSIª	EUCAST
Antimicrobial agent	(mg/L)	(mg/L)	%S	%R	%S	%R	Antimicrobial agent	1 30	(mg/L)	%S	%R %	S %R	Antimicrobial agent	(mg/Ľ)	(mg/L)	%S	%R	%S %R	Antimicrobial agent	(mg/L)	i an	%S	%R	%S	%R	Antimicrobial agent	(mg/Ľ)	(mg/L)	%S %I	R %S %
Enterobacteriaceae ^b (n=13,	289)						Amikacin	4	8	98	0.4 9	2 2	Ceftazidime	>32	>32	3.3	96.4	3 96.7	Colistin	≤0.5	>8			62.7	37.3	Meropenem	16	>32	0 74.	.1 0 50.
Ceftolozane-tazobactam	0.25	2	91.5	6.6	88.4	11.6	Cefepime	>16	>16	18.4 6	6.0 12	.2 74.2	Colistin	≤0.5	>8		6	65.9 34.1	Levofloxacin	>4	>4	5.3	90.2	1.3	96	Piperacillin-tazobactam	64	>64	29.6 34.	.8 29.6 70
Amikacin	2	4	97.6	1.3	95.8	2.4	Ceftazidime	16	>32	34.7 5	2.5 8	.9 65.3	Levofloxacin	>4	>4	6	92.2	2.1 95.8	Meropenem	32	>32	13.2	79.9	20.1	61.7	PSA CAZ-NS (n=817)				
Cefepime	≤0.5	>16	81.4	15.4	79.4	16.9	Colistin	≤0.5	≤0.5		98	.9 1.1	Meropenem	32	>32	0	97	3 75.5	Piperacillin-tazobactam	>64	>64	1.6	93.4	0	98.4	Ceftolozane-tazobactam	2	>32	62.2 32.	.9 62.2 37.
Ceftazidime	0.25	32	80.3	17.3	76.1	19.7	Levofloxacin	>4	>4	24.5 7	1.3 22	.3 76.2	Piperacillin-tazobactam	>64	>64	0.3	98.8	0 99.7	Enterobacter cloacae spec	ies comp	lex ^c (n=1,	118)				Amikacin	8	>32	63.7 28.	.1 52 36
Colistin	≤0.5	>8			82.1	17.9	Meropenem	≤0.015	0.03	99.8	0.1 99	.9 0	KP non-CRE ESBL (n=84	0)					Ceftolozane-tazobactam	0.25	8	80.3	13.9	73.7	26.3	Cefepime	16	>16	28.8 28.	.9 28.8 71.
Levofloxacin	≤0.12	>4	77.4	19.9	72.9	24.3	Piperacillin-tazobactam	4	>64	79.9 1	0.9 67	.3 20.1	Ceftolozane-tazobactam	1	>32	61.3	26.5	50.1 49.9	Amikacin	1	2	97.8	2.1	96.4	2.2	Ceftazidime	32	>32	0 76.	.1 0 10
Meropenem	0.03	0.06	96.7	2.9	97.1	2	EC MDR (n=686)	1	1				Amikacin	2	16	93	6 8	85.5 7	Cefepime	≤0.5	16	83.5	11.3	77.8	12.8	Colistin	1	2	98.9 1.	.1 98.9 1.
Piperacillin-tazobactam	2	64	85.8	8.8	81.6	14.2	Ceftolozane-tazobactam	0.5	4	87.9	9.5 80	.5 19.5	Cefepime	>16	>16	10	82.5	7.7 87.4	Ceftazidime	0.5	>32	67.9	30.5	64.6	32.1	Levofloxacin	>4	>4	29.7 62.	.5 22.3 77.
CRE (n=389)			L		L		Amikacin	4	16	95.9	1.2 84	.3 4.1	Ceftazidime	32	>32	9	80.1	2.5 91	Colistin	≤0.5	>8			86	14	Meropenem	8	>32	31.8 5	58 31.8 44
Ceftolozane-tazobactam	>32	>32		93.3	3.1		Cefepime	>16	>16			.9 75.1	Colistin	≤0.5	1			94 6	Levofloxacin	≤0.12	4	88.6		83.4	13.4	Piperacillin-tazobactam	64	>64	9.2 47.	.7 9.2 90.
Amikacin	16	>32	51.9	20.1	37.3	48.1	Ceftazidime	16	>32	31.2 6		6 68.8	Levofloxacin	4		44.5	47.1	31.8 59.2	Meropenem	0.03	0.12	97.3	2.4		0.8	PSA MDR (n=1,040)			1 1	
Cefepime	>16	>16	4.9	91.5	3.3	92.8	Colistin	≤0.5	≤0.5		97	.4 2.6	Meropenem	0.03	0.5	94.8	1.7	98.3 0	Piperacillin-tazobactam	2	64	76	10	69.7	24	Ceftolozane-tazobactam	2	>32	69.6 26.	
Ceftazidime	>32	>32	5.9	93.8	5.4	94.1	Levofloxacin	>4	>4	6.3 9		.2 94.2	Piperacillin-tazobactam	32	>64	47.2	32.7	33.8 52.8	<i>P. aeruginosa</i> (n=3,284)	1			I	1		Amikacin	8	>32		.7 51.3 35.
Colistin	≤0.5	>8			66	34	Meropenem	0.03	0.06	98.8	0.9 99	.1 0.6	KP MDR (n=1,004)					1	Ceftolozane-tazobactam	0.5	4	90.1		90.1	9.9	Cefepime	16	>16	40.3 23.	
Levofloxacin	>4	>4	13.9	84.3	8.8	88.4	Piperacillin-tazobactam	16	>64	58.6 2	0.3 35	.6 41.4	Ceftolozane-tazobactam	8				27.3 72.7	Amikacin	4	32	88.5	8.3		11.5	Ceftazidime	32	>32	33.3 52.	
Meropenem	32	>32	1.3	95.4	4.6		<i>K. pneumoniae</i> (n=2,648)	1	1			1	Amikacin	4		76.6		65.6 23.4	Cefepime	2	16	79.7		79.7	20.3	Colistin	1	2		.2 98.8 1.
Piperacillin-tazobactam	>64	>64	2.3	95.4	1.8	97.7	Ceftolozane-tazobactam	0.5		75.3 2			Cefepime	>16				3.9 92.6	Ceftazidime	2	32		18.9		24.9	Levofloxacin	>4	>4	24.4 65.	
<i>E. coli</i> (n=6,027)							Amikacin	1	16		4.5 86		Ceftazidime	>32	>32	5.7		3.4 94.3	Colistin	1		99.2				Meropenem	8			.3 22.6 4
Ceftolozane-tazobactam	0.25		98.4		97.3		Cefepime	≤0.5	>16			68 40	Colistin	≤0.5	>8			83.6 16.4	Levofloxacin	0.5		69.8				Piperacillin-tazobactam	64	>64	23.8 36.	.8 23.8 76
Amikacin	2		99.5		98		Ceftazidime	0.5	>32	58.8 3		.7 41.2	Levofloxacin	>4				13.6 79.4	Meropenem	0.5		72.3				PSA XDR (n=639)			1 1	
Cefepime	≤0.5	>16				15.8	Colistin	≤0.5	1		93		Meropenem	0.12				66.1 25.2	Piperacillin-tazobactam	4	>64	72.5	12.9	72.5	27.5	Ceftolozane-tazobactam	4			.3 52.1 47.
Ceftazidime	0.25	16	86.2			13.8	Levofloxacin	≤0.12		68.5 2			Piperacillin-tazobactam	>64	>64	24.2	58.6	12.6 75.8	PSA MER-NS (n=909)	1	1	1 1	I			Amikacin	32	>32		.2 31.8 51.
Colistin	≤0.5	≤0.5			99.5		Meropenem	0.03	8	85.6 1			KP XDR (n=379)				1		Ceftolozane-tazobactam	2		66.2				Cefepime	16	>16		.4 18.2 81.
Levofloxacin	≤0.12	>4	70.8			29.7	Piperacillin-tazobactam	4	>64	68.3 2	4.1 6	62 31.7	Ceftolozane-tazobactam		>32			3.7 96.3	Amikacin	8		63.3				Ceftazidime	32	>32		.9 13.1 86.
Meropenem	≤0.015	0.03			99.9		KP CRE (n=335)			1 1	I		Amikacin	16			19.8		Cefepime	16		42.5				Colistin	1	2		.9 98.1 1
Piperacillin-tazobactam	2	16	92.1	4.3	88.5	7.9	Ceftolozane-tazobactam	>32		2.4 9			Cefepime	>16	>16			0.8 97.9	Ceftazidime	32		38.7				Levofloxacin	>4	>4	8.9 81.	
EC non-CRE ESBL (n=1,2	68)						Amikacin	32	>32	47.2 2		.8 52.8	Ceftazidime	>32	>32	2.4	97.1	2.1 97.6	Colistin	1	2	98.9				Meropenem	16	>32	8.3 79.	.7 8.3 62.
Ceftolozane-tazobactam	0.5	2	93.1	5.2	87.8	12.2	Cefepime	>16	>16	2.1 9	5.8 0	.9 97	Ceftriaxone	>8	>8	0.3	98.4	0.3 98.4	Levofloxacin	>4	>4	29.6	61.7	18.9	81.1	Piperacillin-tazobactam	64	>64	4.5 48.	.5 4.5 95

Criteria as published by CLSI [2017]² and EUCAST

Organisms include: Citrobacter amalonaticus (10), C. amalonaticus / farmeri (2), C. braakii (30), C. freundii (166), C. freundii (166), C. freundii (1), E. asburiae (24), E. cancerogenus (3), E. cloacae (821), E. cloacae (821), E. cloacae species complex (273), E. kobei (5), C. koseri (217), C. werkmanii (1), C. youngae (2), C. braakii (1), Enterobacter aerogenes (315), E. amnigenus (4), E. asburiae (24), E. cancerogenus (3), E. cloacae (821), E. cloacae species complex (273), E. kobei (5), C. koseri (217), C. werkmanii (1), C. youngae (2), C. braakii (1), C. youngae (2), C. braakii (1), Enterobacter aerogenes (315), E. amnigenus (4), E. asburiae (24), E. concerogenus (3), E. cloacae (821), E. cloacae (821), E. cloacae species complex (273), E. kobei (5), C. hoseri (217), C. werkmanii (1), C. youngae (2), C. braakii (1), Enterobacter aerogenes (315), E. annigenus (4), E. asburiae (24), E. concerogenus (3), E. cloacae (821), E. cloacae species complex (273), E. kobei (5), C. hoseri (217), C. werkmanii (1), C. youngae (2), C. braakii (1), E. cloacae (821), E. Escherichia coli (6,027), E. hermannii (1), E. vulneris (1), gram-negative rods in the family Enterobacteriaceae (1), Hafnia alvei (37), Klebsiella oxytoca (621), K. pneumoniae (2,648), K. variicola (10), Leclercia adecarboxylata (2), Morganella morganii (304), Pantoea agglomerans (7), Pluralibacter gergoviae (3), Proteus mirabilis (808), P. penneri (5), P. vulgaris (105), P. vulgaris group (28), Providencia rettgeri (30), P. stuartii (55), Raoultella ornithinolytica (5), R. planticola (1), S. narcescens (586), S. odorifera (2), S. plymuthica (1), S. rubidaea (1), unspeciated Raoultella (7), unspeciated Serratia (1), Versinia enterocolitica (1) Enterobacter cloacae complex includes *E. asburiea* (24), *E. cloacae* (821), *E. cloacae* species complex (273)

- A total of 1,040 PSA were MDR (31.7%), and the most active drugs against MDR PSA were COL (98.8% S) and C-T (69.6%S) while 51.3% were S to AMK and the remaining drugs were ≤40%S
- The MIC distributions of C-T, MER, and TZP for PSA are shown in Figure 3

Conclusions

- C-T demonstrated potent activity against a large collection of contemporary GNB European isolates (PACTS 2014-2016)
- For ENT, AMK and MER were the most active followed by C-T
- Against non-CRE ESBL, MER was the most active followed by COL, AMK, and C-T • For PSA, including MDR isolates, C-T was the most active beta-lactam; only COL was more active
- These data indicate that C-T is an important antimicrobial therapy for hospitalized patients with GN infections

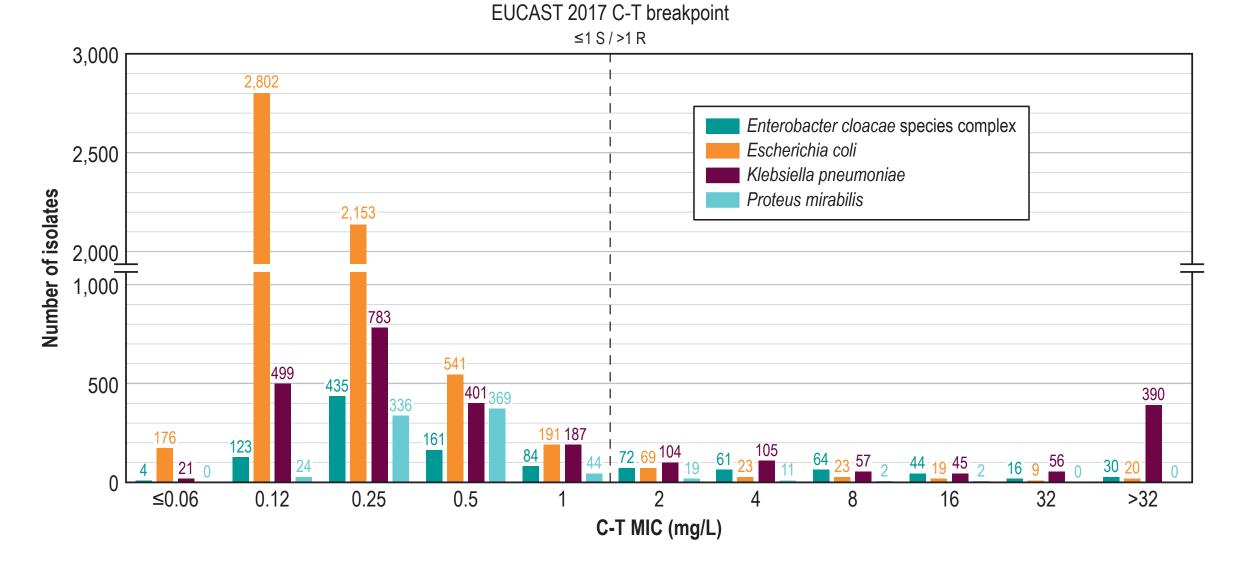
Acknowledgements

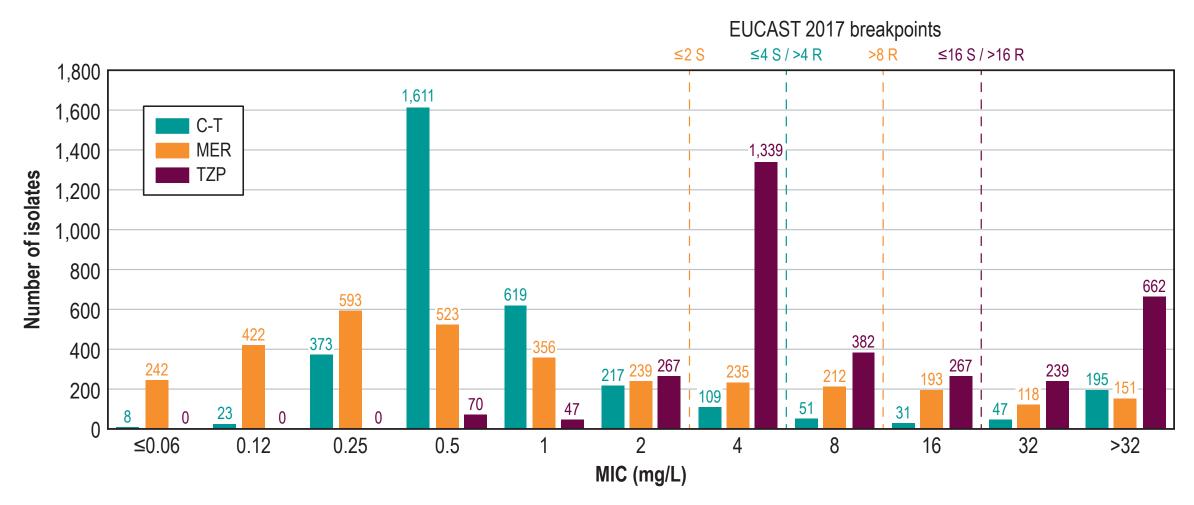
Funding for this research was provided by Merck & Co., Inc., Kenilworth, NJ, USA

References

- Magiorakos AP, Srinivasan A, Carey RB, et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3): 268-281.
- 2. Clinical and Laboratory Standards Institute (2017). M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. Wayne, PA: CLSI.
- 3. EUCAST (2017). Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0, January 2017. Available at http://www.eucast.org/clinical breakpoints/. Accessed January 2017.

Shortridge D; Castanheira M; Sader HS; Streit JM; Mendes RE; Flamm RK


JMI Laboratories, North Liberty, Iowa, USA


http://tinyurl.com/jrymrjs

PACTS (2014-2016)

Figure 2 C-T MIC distribution for the 4 most common enteric pathogens (PACTS 2014-2016)

Figure 3 MIC distribution of C-T, MER, and TZP for PSA (PACTS 2014-2016)

