ECCMID 2017 Poster #P1253

In vitro Activity of Omadacycline and Comparators against Gram-Negative Bacterial Isolates Collected from Patients in European Medical Centres (2016): Results from the SENTRY Antimicrobial Surveillance Program

MD Huband, PR Rhomberg, HS Sader, JE Schuchert, RK Flamm JMI Laboratories, North Liberty, Iowa, USA

REVISED ABSTRACT

Background: Omadacycline is a broad-spectrum aminomethylcycline of the tetracycline family in late-stage clinical development for community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections (intravenous and oral formulations). Omadacycline has shown potent in vitro activity against key bacterial pathogens, including gram-negative bacterial isolates expressing resistance to β -lactams, fluoroquinolones, and/or common tetracycline-resistance mechanisms. This study evaluated the *in vitro* antibacterial activity of omadacycline and comparators against gram-negative bacterial isolates collected from patients in European medical centres that participated in the 2016 SENTRY surveillance program.

Methods: A total of 4,019 clinically significant Enterobacteriaceae, 358 Haemophilus influenzae. 162 Moraxella catarrhalis. and 297 Acinetobacter baumannii calcoaceticus species complex (A. baumannii) isolates representing multiple infection types were collected during 2016. One isolate/patient/infection episode was included. Species identification confirmation and antimicrobial susceptibility testing was performed in a central laboratory according to reference (CLSI) broth microdilution methodology and results interpreted per EUCAST/CLSI breakpoints.

Results: Gram-negative isolates were collected from bloodstream infection (BSI; 30.4%), pneumonia in hospitalized patients (PIHP; 22.1%), urinary tract infection (UTI; 16.5%), skin and skin structure infection (SSSI; 14.1%), intra-abdominal infection (IAI; 7.5%), respiratory tract infection (RTI; 9.1%), and other infection types (0.3%). Against *Enterobacteriaceae*, omadacycline (MIC_{50/90} 1/8 mg/L) was very active, inhibiting 87.1% of isolates at ≤4 mg/L; corresponding susceptibilities (EUCAST/CLSI) to levofloxacin, ceftazidime, piperacillin-tazobactam, and tetracycline were 73.4%/73.4%, 74.5%/79.1%, 80.4%/85.0%, and —/60.1%, respectively. Where treatment options may be limited, omadacycline remained active against resistant organisms/groups, including ESBL phenotype Escherichia coli (MIC_{50/90} 1/2 mg/L) and Klebsiella pneumoniae (MIC_{50/90} 2/8 mg/L; 76.9% inhibited at ≤4 mg/L), ceftazidime-nonsusceptible Enterobacter cloacae species complex (*E. cloacae*, MIC_{50/90} 2/8 mg/L; 88.5% inhibited at \leq 4 mg/L), and A. baumannii (MIC_{50/90} 4/8 mg/L; 64.6% inhibited at ≤4 mg/L). Haemophilus influenzae and M. catarrhalis isolates were also very susceptible to omadacycline with MIC_{50/90} values of 0.5/1 mg/L and 0.25/0.25 mg/L, respectively.

Conclusions: Omadacycline was very active against contemporary gramnegative isolates from Europe, including resistant strains. Omadacycline inhibited ≥90% of Enterobacteriaceae, A. baumannii, H. influenzae, and M. catarrhalis isolates at ≤8, 8, 1, and 0.25 mg/L, respectively. These data support further clinical investigation, especially where resistant pathogens may occur.

		Omada MIC (cycline mg/L)	Tetracycline MIC (mg/L)				
Organism	# tested	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	%S EUCAST / CLSI		
Enterobacteriaceae	4,019	1	8	2	>16	— ^a / 60.1		
Escherichia coli	1,849	1	2	2	>16	<u> </u>		
E. coli (ESBL phenotype)	422	1	2	>16	>16	<u> </u>		
Klebsiella pneumoniae	830	2	8	2	>16	— / 63.1		
Enterobacter cloacae	323	2	4	2	>16	— / 81.4		
A. baumannii	297	4	8	>16	>16	— / 17.8		
H. influenzae	358	0.5	1	0.5	1	100.0 / 100.0		
M. catarrhalis	162	0.25	0.25	0.25	0.5	100.0 / 100.0		

^a EUCAST breakpoints unavailable

INTRODUCTION

- Omadacycline is a broad-spectrum aminomethylcycline antibacterial of the tetracycline family in late-stage clinical development (intravenous and oral formulations) for community-acquired bacterial pneumonia (CABP) and acute bacterial skin and skin structure infections (ABSSSI)
- Omadacycline has demonstrated potent *in vitro* antibacterial activity against gram-negative bacterial pathogens expressing resistance to β -lactams, fluoroquinolones, and common tetracycline-resistance mechanisms

Table 1 Gram-negative organism counts collected during the 2016 omadacycline surveillance study in Europe stratified by infection type

					intection type			
Organism / organism group	Total	BSI	RTI	PIHP	SSSI	IAI	UTI	Others
Enterobacteriaceae	4,019	1,406	0	800	631	361	810	11
Escherichia coli	1,849	795	0	185	194	194	478	3
ESBL phenotype	422	170	0	53	54	48	96	1
Klebsiella pneumoniae	830	277	0	226	98	62	165	2
ESBL phenotype	386	126	0	101	48	34	76	1
Klebsiella oxytoca	192	58	0	59	30	15	28	2
Enterobacter cloacae	323	85	0	94	80	32	32	0
Ceftazidime-nonsusceptible	87	24	0	21	21	6	15	0
Other Enterobacter spp.	102	18	0	40	23	8	12	1
Citrobacter spp.	144	29	0	43	33	18	19	2
Proteus mirabilis	236	58	0	43	75	12	48	0
Indole-positive Proteus spp.	130	27	0	24	49	12	18	0
Serratia marcescens	153	38	0	62	41	5	6	1
Other Serratia spp.	8	0	0	4	3	0	1	0
Acinetobacter baumannii	297	77	0	162	45	5	8	0
Other Acinetobacter spp.	18	3	0	4	9	1	1	0
Stenotrophomonas maltophilia	133	21	0	84	17	5	6	0
Haemophilus influenzae	358	9	303	44	0	0	0	2
β-lactamase-positive	60	2	50	8	0	0	0	0
β-lactamase-negative	298	7	253	36	0	0	0	2
Moraxella catarrhalis	162	1	149	10	0	0	0	2
Totals	4,987	1,517	452	1,104	702	372	825	15
Abbreviations: BSI, bloodstream infectio abdominal infection; SSSI, skin and skin	on; RTI, respirat o structure infec	ory tract infection tion; UTI, urinary	caused by <i>H. in</i> tract infection	nfluenzae or M. d	catarrhalis; PIHP,	pneumonia in ho	spitalized patien	t; IAI, intra-

• This study evaluated the *in vitro* antibacterial activity of omadacycline and comparators against gram-negative bacterial isolates collected from patients with multiple infection types in European medical centres participating in the 2016 SENTRY surveillance program

MATERIALS AND METHODS

• A total of 4,987 gram-negative bacterial isolates composed of 315 Acinetobacter spp., 4,019 Enterobacteriaceae, 358 Haemophilus influenzae, 162 Moraxella catarrhalis, and 133 Stenotrophomonas maltophilia were collected from patients with multiple infection types in 38 medical centres in 18 European countries and Israel during 2016. Only one isolate per patient/ infection episode is represented

Bacterial isolates were initially identified by the submitting laboratories and confirmed by JMI Laboratories using matrix-assisted laser desorption/ionizationtime of flight mass spectrometry (Bruker Daltonics, Bremen, Germany) Susceptibility testing was performed according to CLSI (M07-A10, 2015) reference broth microdilution methodology, and results were interpreted using EUCAST (2017) breakpoint interpretive criteria. CLSI quality control (QC) reference strains (M100-S27, 2017) were tested concurrently and included Escherichia coli ATCC 25922, ATCC 35218 and NCTC 13353. Klebsiella pneumoniae ATCC 700603, ATCC BAA-1705 and ATCC BAA-2814, Haemophilus influenzae ATCC 49247 and ATCC 49766, and Pseudomonas aeruginosa ATCC 27853

RESULTS

• Overall. 15.7% of the *Enterobacteriaceae* isolates and 15.2% of the Acinetobacter baumannii calcoaceticus species complex (A. baumannii) isolates obtained in 2016 from European patients were associated with skin and skin structure infections (SSSI; Table 1). The percentages increased to 19.9% and 54.5%, respectively, in patients hospitalized with pneumonia (PIHP; Table 1). Similarly, 12.8% and 63.2% of *Stenotrophomonas maltophilia* isolates were associated with either SSSI or PIHP infections, respectively (Table 1) Cumulative percent inhibition data are presented in Table 2 for omadacycline against Enterobacteriaceae, nonfermenters (Acinetobacter spp. and S. maltophilia), and fastidious gram-negatives (H. influenzae and M. catarrhalis). Figure 1 displays cumulative percent inhibition data for omadacycline and comparator tetracyclines versus Enterobacteriaceae. Omadacycline was significantly more active than either doxycycline or tetracycline at each MIC concentration tested (Figure 1)

Figure 1 Cumulative % inhibition results for omadacycline and comparators against 4,019 *Enterobacteriaceae* isolates collected in European medical centres during 2016

- Omadacycline demonstrated good *in vitro* activity against *Enterobacteriaceae* isolates (MIC_{50/90} 1/8 mg/L; 87.1% inhibited at \leq 4 mg/L) and was most active against E. coli, E. coli exhibiting an ESBL phenotype, and Klebsiella 93.8% of Enterobacter cloacae species complex (E. cloacae), 88.5% of K. pneumoniae, 76.9% of ESBL-phenotype K. pneumoniae, and 83.0% of Serratia marcescens isolates at ≤4 mg/L (Table 2)
- of levofloxacin, ceftazidime, piperacillin-tazobactam, and tetracycline were 73.4%/73.4%, 74.5%/79.1%, 80.4%/85.0%, and —/60.1%, respectively (Table 3)

Table 2 Antimicrobial activity of omadacycline tested against the main organisms and organism groups of isolates included in this study

Organisme / organism group	No. of isolates at MIC (mg/L); cumulative % ^a							MIC	MIC						
Organisms / organism group	≤0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	>	WIC ₅₀	
Enterobacteriaceae (4,019)			0 0.0	3 0.1	128 3.3	943 26.7	<u>1,198</u> <u>56.5</u>	837 77.4	393 87.1	207 92.3	162 96.3	108 99.0	40 100.0	1	8
Escherichia coli (1,849)			0 0.0	2 0.1	121 6.7	798 49.8	<u>561</u> <u>80.2</u>	252 93.8	88 98.5	22 99.7	3 99.9	2 100.0		1	2
ESBL phenotype (422)				0 0.0	13 3.1	109 28.9	<u>161</u> <u>67.1</u>	102 91.2	27 97.6	9 99.8	0 99.8	1 100.0		1	2
Klebsiella pneumoniae (830)				0 0.0	2 0.2	46 5.8	272 38.6	<u>269</u> 71.0	130 86.6	66 94.6	27 97.8	16 99.8	2 100.0	2	8
ESBL phenotype (386)				0 0.0	2 0.5	25 7.0	68 24.6	<u>101</u> 50.8	101 76.9	54 90.9	20 96.1	13 99.5	2 100.0	2	8
Klebsiella oxytoca (192)				0 0.0	1 0.5	24 13.0	<u>127</u> 79.2	21 90.1	12 96.4	6 99.5	1 100.0			1	2
Enterobacter cloacae (323)					0 0.0	7 2.2	108 35.6	<u>148</u> 81.4	40 93.8	8 96.3	8 98.8	4 100.0		2	4
Ceftazidime-nonsusceptible (87)					0 0.0	1 1.1	20 24.1	<u>37</u> 66.7	19 88.5	6 95.4	3 98.8	1 100.0		2	8
Other <i>Enterobacter</i> spp. (102)					0 0.0	11 10.8	<u>48</u> 57.8	31 88.2	5 93.1	2 95.1	5 100.0			1	4
Citrobacter spp. (144)				0 0.0	1 0.7	44 31.2	<u>56</u> 70.1	26 88.2	11 95.8	4 98.6	2 100.0			1	4
Proteus mirabilis (236)							0 0.0	5 2.1	5 4.2	27 15.7	<u>84</u> 51.3	82 86.0	33 100.0	16	>32
Indole-positive <i>Proteus</i> spp. (130)						0 0.0	1 0.8	15 12.3	30 35.4	<u>47</u> 71.5	28 93.1	4 96.2	5 100.0	8	16
Serratia marcescens (153)						0 0.0	2 1.3	56 37.9	<u>69</u> 83.0	23 98.0	3 100.0			4	8
Other <i>Serratia</i> spp. (8)					0 0.0	2 25.0	<u>3</u> 62.5	2 87.5	1 100.0					1	_
Acinetobacter baumannii (297)			0 0.0	7 2.4	21 9.4	11 13.1	18 19.2	28 28.6	<u>107</u> 64.6	81 91.9	19 98.3	4 99.7	1 100.0	4	8
Other Acinetobacter spp. (18)		0 0.0	1 5.6	4 27.8	<u>8</u> 72.2	3 88.9	2 100.0							0.25	1
Stenotrophomonas maltophilia (133)				0 0.0	1 0.8	3 3.0	15 14.3	43 46.6	<u>47</u> 82.0	<u>18</u> 95.5	3 97.7	2 99.2	1 100.0	4	8
Haemophilus influenzae (358)			0 0.0	1 0.3	10 3.1	<u>169</u> 50.3	144 90.5	31 99.2	2 99.7	0 99.7	1 100.0			0.5	1
β-lactamase-positive (60)				0 0.0	1 1.7	27 46.7	<u>31</u> 98.3	1 100.0						1	1
β-lactamase-negative (298)			0 0.0	1 0.3	9 3.4	<u>142</u> 51.0	113 88.9	30 99.0	2 99.7	0 99.7	1 100.0			0.5	2
Moraxella catarrhalis (162)			0	64 39.5	<u>91</u> 95.7	7 100.0								0.25	0.25
3 MIC ₅₀ values are underlined; MIC ₉₀ values are bold															

oxytoca isolates (MIC_{50/90} values, 1/2 mg/L; Table 2). Omadacycline inhibited ceftazidime-nonsusceptible E. cloacae, 95.8% of Citrobacter spp., 86.6% of

Enterobacteriaceae susceptibilities (EUCAST/CLSI) to comparators composed

Table 3 <i>In vitro</i> negative isolat during 2016	o activi tes col	ty of om lected fr	adacycli om patie	ine and ents in E	compara Europear	ators aga n medica	ainst gra al centre	am- es	 The <i>in vitro</i> activity of omadacycline and comparator compounds against <i>Enterobacteriaceae</i>, nonfermenters, and fastidious gram-negative isolates are presented in Table 3. Omadacycline (MIC_{50/90} 1/8 mg/L) was ≥2-fold more
Organism (no. tested)	MIC ₅₀	MIC ₉₀		CLSIª			EUCAST ^a		active than doxycycline (MIC _{50/90} 2/>8 mg/L; 66.3% susceptible [CLSI criteria])
antimicrobial agent	(mg/L)	(mg/L)	%S	%I	%R	%S	%I	%R	and tetracycline (MIC _{core} 2/>16 mg/L: 60.1% susceptible [CLSI criteria]) and
Enterobacteriaceae (4,019) ^o	1	8	_	_	_	_	_		four to eight fold less active than tige value (MIC $\sim 0.25/1$ mg/l $\cdot 0.25/2$
Doxycycline	2	>8	66.3	9.6	24.1	_	_	_	$1001-10$ eignt-1010 less active than tigecycline ($1010_{50/90}$, $0.23/1$ mg/L, $32.3/6$
Tetracycline	2	>16	60.1	3.1	36.8	—	—	-	susceptible [EUCAST]) against Enterobacteriaceae
Tigecycline	0.25	1	97.8	2.1	0.1°	92.5	5.3	2.2	Against A baumannii isolates omadacycline (MIC 4/8 mg/L·64.6%)
Ceftazidime	0.06	>4	73.4 79.1	0.9	25.7	73.4 74.5	0.9 4.6	25.7	individual $(1, 0, 0)$ individual $(1, 0)$ individual $(1,$
Piperacillin-tazobactam Escherichia coli (1,849)	2	64	85.0	5.8	9.3	80.4	4.6	15.0	2/4 mg/L, whereas susceptibility to doxycycline (MIC _{50/90} , >8/>8 mg/L;
Omadacycline	1	2	_			-	_	-	42.8% susceptible [CLSI]) and tetracycline (MIC>16/>16 mg/L: 17.8%
Tetracycline	2	>0 >16	60.6	0.3	39.2	_	_	_	suscentible [CLSII] was low (Tables 2 and 3)
Tigecycline	0.12	0.25	99.9	0.1	0.0 ^c	99.9	0.1	0.1	susceptible [OLOI]) was low (Tables 2 and 5)
ESBL phenotype (422)		-							 Omadacycline was active against S. maltophilia isolates, inhibiting 82.0% at
Omadacycline	1 8	2 >8	46.2	— 23 7		_	_	_	$\leq 4 \text{ mg/l}$ (Table 2)
Tetracycline	>16	>16	36.0	0.2	63.7	_	_	_	
Tigecycline	0.12	0.25	99.8	0.2	0.0°	99.8	0.0	0.2	 Haemophilus influenzae (including β-lactamase-producing strains) were
Klebsiella pneumoniae (830)	-	-							inhibited by omadacycline. tetracycline. and tidecycline (MIC., values 1, 1, and
Omadacycline Doxycycline	2	8 >8	65.0	8.6	26.4	—	_	_	0.25 ma/l respectively) (Table 3)
Tetracycline	2	>16	63.1	4.7	32.2	_	_	_	0.20 mg/L, respectively (raple 0)
Tigecycline	0.5	1	98.4	1.6	0.0°	93.4	5.1	1.6	 Moraxella catarrhalis isolates were inhibited by low levels of omadacycline
ESBL phenotype (386)									(MIC 0.25/0.25 mg/L · 100.0% suscentible at <0.5 mg/L) tetracycline
Omadacycline	2	8	- 44.0	— 1/1 8		_	_	-	$(MO_{50/90}, 0.20/0.20 \text{ mg/L}, 100.070 \text{ subsceptible at =0.0 mg/L}), tetracycline (MO_{50/90}, 0.20/0.20 mg/L), arad tigra gyralina (MO_{50/90}, 0.00/0.00 mg/L).$
Tetracycline	16	>16	40.2	7.8	52.1	_	_	-	$(NIC_{50/90}, 0.25/0.5 \text{ mg/L})$, and tigecycline $(NIC_{50/90}, 0.06/0.06 \text{ mg/L}; \text{ Table 3})$
Tigecycline <i>K. oxytoca</i> (192)	0.5	2	97.7	2.3	0.0°	89.4	8.3	2.3	
Omadacycline	1	2	_	_	_	_	_	-	
Doxycycline	1	4	92.1	3.7	4.2	—	_	-	
Tetracycline	1	8	89.6 100.0	2.1	8.3 0.0°	 08 /	— 1.6		CONCLUSIONS
Enterobacter cloacae (323) ^d	0.25	0.5	100.0	0.0	0.0°	90.4	1.0	0.0	CUNCLUSIUNS
Omadacycline	2	4	_	_	_	_	_	-	
Doxycycline	2	8	83.9	7.7	8.4	_	_	-	
Tetracycline	2	>16	81.4	1.9	16.7		— 5.0	— 0.6	 Omadacycline was active against Enterobacteriaceae isolates of multiple
Ceftazidime-nonsusceptible (87	7) ^e	0.5	55.4	0.0	0.0	54.4	5.0	0.0	infection types, inhibiting 87.1% of all isolates tested at ≤4 mg/L
Omadacycline	2	8	-	-	_	-	-	-	• The <i>in vitro</i> spectrum of omedacycline included ESRL-phenotype isolates
Doxycycline	4	>8	57.5	23.0	19.5	—	—	-	
Tigecycline	0.5	2	46.0	4.6	49.4 0.0°	89.7	10.3	0.0	of <i>E. coli</i> (MIC _{50/90} , 1/2 mg/L) and <i>K. pneumoniae</i> (MIC _{50/90} , 2/8 mg/L; 76.9%)
Other <i>Enterobacter</i> spp. (102) ^f									inhibited by ≤ 4 mg/L) and ceftazidime-nonsusceptible isolates of <i>E. cloacae</i>
Omadacycline	1	4	-	_	_	_	—	-	$(MIC = 2/8 \text{ ma/l} \cdot 88.5\% \text{ inhibited by } < 4 \text{ ma/l})$
Doxycycline	1	4	90.2	2.0	7.8	_	_	-	$(1010_{50/90}, 2/0, 119/1, 00.070, 11110100, 09 = 119/1)$
Tetracycline		Λ	00.2	10				_	\bigcirc
Tigecycline <i>Citrobacter</i> spp. (144) ^g	0.25	4 0.5	90.2 100.0	1.0 0.0	8.8 0.0°	 94.1	5.9	0.0	 Omadacycline was active against nontermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline	1 0.25 1	4 0.5 4	90.2 100.0	1.0 0.0	8.8 0.0°	 94.1 	 5.9 	0.0	 Omadacycline was active against nontermenters, innibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Usomorbilus influenzas (including 8 lostomore positive) and M. esterrholia
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline	1 0.25 1 1 1	4 0.5 4 4 2	90.2 100.0 92.4 93.1	1.0 0.0 2.8 2.8	8.8 0.0° 	 94.1 	 5.9 	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline	1 0.25 1 1 1 0.25	4 0.5 4 4 2 0.5	90.2 100.0 92.4 93.1 100.0	1.0 0.0 2.8 2.8 0.0	8.8 0.0° 	 94.1 97.9	 5.9 2.1	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L,
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline <i>Serratia marcescens</i> (153)	1 0.25 1 1 1 0.25	4 0.5 4 4 2 0.5	90.2 100.0 92.4 93.1 100.0	1.0 0.0 	8.8 0.0° 4.9 4.2 0.0°	 94.1 97.9	5.9 — — 2.1	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively)
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline <i>Serratia marcescens</i> (153) Omadacycline	1 0.25 1 1 1 0.25 4	4 0.5 4 4 2 0.5 8 8	90.2 100.0 92.4 93.1 100.0	1.0 0.0 2.8 2.8 0.0	8.8 0.0° 4.9 4.2 0.0°	 94.1 97.9	5.9 — — 2.1	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively)
TigecyclineCitrobacter spp. (144)gOmadacyclineDoxycyclineTetracyclineTigecyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineImage: Complement of the second of the secon	1 0.25 1 1 1 0.25 4 4 >16	4 0.5 4 4 2 0.5 8 8 8 >16	90.2 100.0 92.4 93.1 100.0 66.0 7.8	1.0 0.0 2.8 2.8 0.0 25.5 26.8	8.8 0.0° 4.9 4.2 0.0° 	 94.1 97.9	 5.9 2.1 	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of
TigecyclineCitrobacter spp. (144)gOmadacyclineDoxycyclineTetracyclineTigecyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineIndext Component (153)OmadacyclineTetracyclineTetracyclineTetracyclineIndext Component (153)Indext Component (153) <td>1 0.25 1 1 1 0.25 4 4 >16 1</td> <td>4 0.5 4 4 2 0.5 8 8 8 >16 1</td> <td>90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0</td> <td>1.0 0.0 2.8 2.8 0.0 </td> <td>8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0°</td> <td> 94.1 97.9 97.9 90.8</td> <td>5.9 2.1 9.2</td> <td>0.0 — — 0.0 — — — 0.0</td> <td> Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative </td>	1 0.25 1 1 1 0.25 4 4 >16 1	4 0.5 4 4 2 0.5 8 8 8 >16 1	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0	1.0 0.0 2.8 2.8 0.0 	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0°	 94.1 97.9 97.9 90.8	5.9 2.1 9.2	0.0 — — 0.0 — — — 0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline <i>Serratia marcescens</i> (153) Omadacycline Doxycycline Tetracycline Tetracycline <i>I</i> igecycline <i>Acinetobacter baumannii</i> (297)	1 0.25 1 1 1 0.25 4 4 >16 1	4 0.5 4 4 2 0.5 8 8 8 >16 1	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0°	 94.1 97.9 97.9 90.8	5.9 2.1 9.2	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. <i>baumannii</i> and 82.0% of S. <i>maltophilia</i> isolates at ≤4 mg/L <i>Haemophilus influenzae</i> (including β-lactamase-positive) and <i>M. catarrhalis</i> isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>. A <i>baumannii</i> S. <i>maltophilia</i> H
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline <i>Serratia marcescens</i> (153) Omadacycline Doxycycline Tetracycline Tigecycline <i>Acinetobacter baumannii</i> (297) Omadacycline Doxycycline	1 0.25 1 1 1 0.25 4 4 >16 1 1 4 >16 1 8	4 0.5 4 4 2 0.5 8 8 8 ≥16 1 1 8 8 ≥8	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0°	 94.1 97.9 90.8	5.9 2.1 9.2	0.0	 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of Enterobacteriaceae, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalia are likely to accur including.
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline <i>Serratia marcescens</i> (153) Omadacycline Doxycycline Tetracycline <i>Tetracycline</i> <i>Acinetobacter baumannii</i> (297) Omadacycline Doxycycline <i>Acinetobacter baumannii</i> (297)	1 0.25 1 1 1 0.25 4 4 >16 1 1 4 >8 >16	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >8 >8 >16	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8	1.0 0.0 2.8 2.8 0.0 	8.8 0.0° 4.9 4.2 0.0° 	 94.1 97.9 97.9 90.8	5.9 2.1 9.2 9.2		 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of Enterobacteriaceae, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI
TigecyclineCitrobacter spp. (144)gOmadacyclineDoxycyclineTetracyclineTigecyclineOmadacyclineDoxycyclineTetracyclineTigecyclineAcinetobacter baumannii (297)OmadacyclineDoxycyclineITetracyclineITetracyclineDoxycyclineITetracyclineITetracyclineITetracyclineITetracyclineITetracyclineITetracyclineITigecycline	1 0.25 1 1 1 0.25 4 4 >16 1 1 * 8 >8 >16 2	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >8 >16 16 4	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 17.8	1.0 0.0 2.8 2.8 0.0 - 25.5 26.8 0.0 - 2.0 5.7 -	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0° 55.2 76.4 —	 94.1 97.9 90.8 90.8	5.9 2.1 9.2 9.2		 Omadacycline was active against nontermenters, inhibiting 64.6% of <i>A. baumannii</i> and 82.0% of <i>S. maltophilia</i> isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and <i>M. catarrhalis</i> isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, <i>A. baumannii</i>, <i>S. maltophilia</i>, <i>H. influenzae</i>, and <i>M. catarrhalis</i> are likely to occur, including CABP and ABSSSI
Tigecycline Citrobacter spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline Serratia marcescens (153) Omadacycline Doxycycline Tetracycline Acinetobacter baumannii (297) Omadacycline Doxycycline Tetracycline Comadacycline Doxycycline Comadacycline Comadacycline Comadacycline Comadacycline	1 0.25 1 1 1 0.25 4 4 >16 1 4 >16 1 4 >8 >16 2	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 1 8 >8 >16 4	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 	8.8 0.0° 4.9 4.2 0.0° 	 94.1 97.9 97.9 90.8	5.9 2.1 9.2 9.2		 Omadacycline was active against nonfermenters, Inhibiting 64.6% of A. <i>baumannii</i> and 82.0% of <i>S. maltophilia</i> isolates at ≤4 mg/L <i>Haemophilus influenzae</i> (including β-lactamase-positive) and <i>M. catarrhalis</i> isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, <i>A. baumannii</i>, <i>S. maltophilia</i>, <i>H. influenzae</i>, and <i>M. catarrhalis</i> are likely to occur, including CABP and ABSSSI
Tigecycline <i>Citrobacter</i> spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline <i>Serratia marcescens</i> (153) Omadacycline Doxycycline Tetracycline <i>Acinetobacter baumannii</i> (297) Omadacycline Doxycycline <i>Acinetobacter spl.</i> (18) ⁱ Omadacycline <i>Acinetobacter</i> spp. (18) ⁱ Omadacycline	1 0.25 1 1 1 0.25 4 4 >16 1 × 8 >16 1 × 8 >16 2 ·	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 1 8 >8 >16 4 4 1 0.5	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 17.8 	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0	8.8 0.0° 4.9 4.2 0.0° 	 94.1 97.9 97.9 90.8 90.8			 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. <i>baumannii</i> and 82.0% of S. <i>maltophilia</i> isolates at ≤4 mg/L <i>Haemophilus influenzae</i> (including β-lactamase-positive) and <i>M. catarrhalis</i> isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, <i>A. baumannii</i>, <i>S. maltophilia</i>, <i>H. influenzae</i>, and <i>M. catarrhalis</i> are likely to occur, including CABP and ABSSSI
TigecyclineCitrobacter spp. (144)gOmadacyclineDoxycyclineTetracyclineTigecyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineTetracyclineTigecyclineTigecyclineTigecyclineDoxycyclineTigecyclineAcinetobacter baumannii (297)OmadacyclineDoxycyclineTetracyclineTetracyclineDoxycyclineTigecyclineDoxycyclineDoxycyclineTigecyclineDoxycyclineDoxycyclineDoxycyclineDoxycyclineTigecyclineAcinetobacter spp. (18)iOmadacyclineDoxycyclineDoxycyclineTigecyclineTigecyclineAcinetobacter spp. (18)iOmadacyclineDoxycyclineDoxycyclineTetracyclineDoxyc	1 0.25 1 1 1 0.25 4 4 >16 1 2 >8 >16 2 >16 2 0.25 0.12 1	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 1 1 8 >8 >16 4 1 0.5 4	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 17.8 100.0 100.0	1.0 0.0 2.8 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 2.0 5.7 0.0 0.0 0.0	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0° 55.2 76.4 0.0 0.0 0.0	 94.1 97.9 97.9 90.8 90.8			 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. <i>baumannii</i> and 82.0% of S. <i>maltophilia</i> isolates at ≤4 mg/L <i>Haemophilus influenzae</i> (including β-lactamase-positive) and <i>M. catarrhalis</i> isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, <i>A. baumannii</i>, <i>S. maltophilia</i>, <i>H. influenzae</i>, and <i>M. catarrhalis</i> are likely to occur, including CABP and ABSSSI
Tigecycline Citrobacter spp. (144) ^g Omadacycline Doxycycline Tetracycline Tigecycline Serratia marcescens (153) Omadacycline Doxycycline Tetracycline Acinetobacter baumannii (297) Omadacycline Doxycycline Tetracycline Tigecycline Tigecycline Comadacycline Doxycycline Tigecycline Tigecycline Comadacycline Doxycycline Tigecycline Tigecycline Comadacycline Comadacycline Comadacycline Comadacycline	1 0.25 1 1 1 0.25 4 4 >16 1 4 >16 1 4 >16 1 2 >16 2 >16 2 0.12 0.12 0.12 1 0.12 (133)	4 0.5 4 4 2 0.5 8 8 >16 1 8 >8 >16 4 >16 4 1 0.5 4 0.5	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 100.0 100.0 100.0	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0	8.8 0.0° 	 94.1 97.9 97.9 90.8 90.8			 Omadacycline was active against honfermenters, inhibiting 64.6% of A. <i>baumannii</i> and 82.0% of S. <i>maltophilia</i> isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. <i>baumannii</i>, S. <i>maltophilia</i>, H. <i>influenzae</i>, and M. catarrhalis are likely to occur, including CABP and ABSSSI
Tigecycline <i>Citrobacter</i> spp. (144) ⁹ Omadacycline Doxycycline Tetracycline <i>Tetracycline</i> <i>Serratia marcescens</i> (153) Omadacycline Doxycycline Tetracycline <i>Tetracycline</i> <i>Acinetobacter baumannii</i> (297) Omadacycline Doxycycline Tetracycline <i>Tetracycline</i> <i>Tigecycline</i> <i>Acinetobacter</i> spp. (18) ⁱ Omadacycline <i>Doxycycline</i> <i>Tetracycline</i> <i>Tigecycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Tetracycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i> <i>Doxycycline</i>	1 0.25 1 1 1 0.25 4 4 >16 1 4 >16 1 4 >16 1 2 0.12 0.12 1 0.12 1 0.12 (133) 4 2	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 1 4 >8 >16 4 1 0.5 4 0.5 4 0.5 4 0.5	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 100.0 100.0 100.0 	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0 0.0 	8.8 0.0° 				 Omadacycline was active against honfermenters, innibiting 64.6% of A. <i>baumannii</i> and 82.0% of S. <i>maltophilia</i> isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. <i>baumannii</i>, S. <i>maltophilia</i>, H. <i>influenzae</i>, and M. catarrhalis are likely to occur, including CABP and ABSSSI
TigecyclineCitrobacter spp. (144)gOmadacyclineDoxycyclineTetracyclineTigecyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineTetracyclineTigecyclineAcinetobacter baumannii (297)OmadacyclineDoxycyclineTetracyclineAcinetobacter spp. (18)gOmadacyclineTigecyclineDoxycyclineTetracyclineTigecyclineStenotrophomonas maltophilia (197)OmadacyclineDoxycyclineTigecyclineDoxycyclineDoxycyclineTetracyclineDoxycyclineTetracyclineStenotrophomonas maltophilia (197)OmadacyclineDoxycyclineTigecyclineStenotrophomonas maltophilia (197)OmadacyclineTetracyclineStenotrophomonas maltophilia (197)	1 0.25 1 1 1 0.25 4 4 >16 1 >16 1 >16 1 × 8 >16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * 16 2 * * 16 2 * * * * * * * * * * * * * * * * * *	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 4 2 1 0.5 4 0.5 4 0.5 8 4 0.5 8 4 0.5	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 100.0 100.0 100.0 100.0 	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0	8.8 0.0° 4.9 4.2 0.0° 	 94.1 97.9 97.9 90.8 90.8 90.8			 Omadacycline was active against nonfermenters, innibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI ACKNOWLEDGEMENTS
Tigecycline Citrobacter spp. (144) ⁹ Omadacycline Doxycycline Tetracycline Serratia marcescens (153) Omadacycline Doxycycline Tetracycline Tigecycline Acinetobacter baumannii (297) Omadacycline Doxycycline Tetracycline Tigecycline Acinetobacter spp. (18) ⁱ Omadacycline Tetracycline Tetracycline Stenotrophomonas maltophilia (Omadacycline Doxycycline Tigecycline Comadacycline Comadacycline Tigecycline Comadacyc	1 0.25 1 1 1 0.25 4 4 >16 1 × 8 >16 2 × 16 2 0.12 0.12 1 0.12 (133) 4 2 × 16 1 1 0.12 (133)	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 4 >16 4 1 0.5 4 0.5 4 0.5 4 0.5 4 0.5 8 8 4 0.5	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 100.0 100.0 100.0 100.0 	1.0 0.0 	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0° 55.2 76.4 0.0 0.0 0.0 0.0 0.0 -	 94.1 97.9 97.9 90.8 90.8 90.8			 Omadacycline was active against nonrementers, innibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI ACKNOWLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc.
Tigecycline Citrobacter spp. (144) ⁹ Omadacycline Doxycycline Tetracycline Serratia marcescens (153) Omadacycline Doxycycline Tetracycline Acinetobacter baumannii (297) Omadacycline Doxycycline Tetracycline Tigecycline Acinetobacter spp. (18) ⁱ Omadacycline Tigecycline Acinetobacter spp. (18) ⁱ Omadacycline Doxycycline Tetracycline Stenotrophomonas maltophilia Omadacycline Tigecycline Stenotrophomonas maltophilia Omadacycline Tetracycline Tigecycline Tigecycline Tigecycline Comadacycline Doxycycline Tigecycline Stenotrophomonas maltophilia Omadacycline Tetracycline Comadacycline Doxycycline Tigecycline Comadacycline Comadacycline Comadacycline Tigecycline Comadacycline C	1 0.25 1 1 1 0.25 4 4 >16 1 4 >16 1 * 8 >16 2 * 16 2 0.12 1 0.12 (133) 4 2 (133) 4 2 >16 1 0.12	4 0.5 4 4 2 0.5 8 8 8 >16 1 1 8 >8 >16 1 4 0.5 4 0.5 4 0.5 4 0.5 8 4 0.5 16 2	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 100.0 100.0 100.0 -	1.0 0.0 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0 0.0 -	8.8 0.0° 	 94.1 97.9 97.9 90.8 90.8 90.8			 Omadacycline was active against honrermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI ACKNOWLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc.
TigecyclineCitrobacter spp. (144)9OmadacyclineDoxycyclineTetracyclineTigecyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineTigecyclineAcinetobacter baumannii (297)OmadacyclineDoxycyclineTetracyclineTigecyclineAcinetobacter baumannii (297)OmadacyclineDoxycyclineTetracyclineTigecyclineAcinetobacter spp. (18)1OmadacyclineDoxycyclineTigecyclineTigecyclineStenotrophomonas maltophilia (OmadacyclineDoxycyclineTetracyclineTigecyclineStenotrophomonas maltophilia (TetracyclineTigecyclineTigecyclineAcinecophilus influenzae (358)1OmadacyclineTigecyclineTigecyclineTigecyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTigecyclineTetracyclineTetracyclineTetracyclineTigecyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTe	1 0.25 1 1 1 0.25 4 4 >16 1 × 8 >16 1 × 8 >16 2 × 16 2 0.12 0.12 1 0.12 (133) 4 2 × 16 1 0.12 (133) 4 2	4 0.5 4 4 2 0.5 8 8 8 >16 1 1 8 >8 >16 4 >16 4 0.5 4 0.5 4 0.5 8 4 0.5 8 4 2 16 2 1 1	90.2 100.0 92.4 93.1 100.0 66.0 7.8 100.0 42.8 17.8 17.8 100.0 100.0 100.0 100.0 100.0 100.0	1.0 0.0 2.8 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0	8.8 0.0° 4.9 4.2 0.0° 	 94.1 97.9 90.8 90.8 			 Omadacycline was active against nonrermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI MCKNOVLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc.
TigecyclineCitrobacter spp. (144)°OmadacyclineDoxycyclineTetracyclineTigecyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineTetracyclineTetracyclineTigecyclineAcinetobacter baumannii (297)OmadacyclineDoxycyclineTigecyclineAcinetobacter spp. (18)°OmadacyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineDoxycyclineTigecyclineDoxycyclineTigecyclineDoxycyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTetracyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTetracyclineTigecycline <td>1 0.25 1 1 1 0.25 4 4 >16 1 >16 1 × 8 >16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 1 × 10 × 10 × 10 × 10 × 10 × 10 ×</td> <td>4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 1 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 16 2 1 1 0.5</td> <td>90.2 100.0 </td> <td>1.0 0.0 2.8 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0° 55.2 76.4 0.0 0.0 0.0 0.0 0.0 0.0</td> <td> 94.1 97.9 97.9 90.8 90.8 90.8 90.8</td> <td></td> <td></td> <td> Omadacycline was active against nontermenters, inhibiting 64.5% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI MCKNOWLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc. </td>	1 0.25 1 1 1 0.25 4 4 >16 1 >16 1 × 8 >16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 2 × 16 1 × 10 × 10 × 10 × 10 × 10 × 10 ×	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 1 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 16 2 1 1 0.5	90.2 100.0 	1.0 0.0 2.8 2.8 2.8 0.0 25.5 26.8 0.0 2.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0° 55.2 76.4 0.0 0.0 0.0 0.0 0.0 0.0	 94.1 97.9 97.9 90.8 90.8 90.8 90.8			 Omadacycline was active against nontermenters, inhibiting 64.5% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI MCKNOWLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc.
TigecyclineCitrobacter spp. (144)°OmadacyclineDoxycyclineTetracyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineTetracyclineTetracyclineAcinetobacter baumannii (2V7)OmadacyclineDoxycyclineTetracyclineTetracyclineTigecyclineStenotrophomonas maltophila (OmadacyclineOmadacyclineTigecyclineTetracyclineTetracyclineTigecycline	1 0.25 1 1 1 0.25 4 4 >16 1 >16 1 >16 2 >16 2 >16 2 >16 2 0.12 (133) 4 2 >16 2 >16 1 0.12 (133) 4 2 >16 1 0.12 (133) 4 2 >16 2	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 4 2 1 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5	90.2 100.0 	1.0 0.0 	8.8 0.0° 4.9 4.2 0.0° 8.5 65.4 0.0° 55.2 76.4 0.0 0.0 0.0 0.0 0.0 0.0	 94.1 97.9 97.9 90.8 90.8 			 Omadacycline was active against nonfermenters, inhibiting 64.6% of A. baumannii and 82.0% of S. maltophilia isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and M. catarrhalis isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, A. baumannii, S. maltophilia, H. influenzae, and M. catarrhalis are likely to occur, including CABP and ABSSSI MCKNOWLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc.
TigecyclineCitrobacter spp. (144)9OmadacyclineDoxycyclineTetracyclineSerratia marcescens (153)OmadacyclineDoxycyclineTetracyclineTetracyclineTetracyclineAcinetobacter baumannii (297)OmadacyclineTetracyclineTetracyclineTetracyclineTetracyclineTigecyclineAcinetobacter spp. (18)1OmadacyclineTetracyclineTigecyclineTigecyclineTetracyclineTetracyclineTetracyclineTetracyclineTigecyclineTetracyclineTigecyclineTetracyclineTigecyclineTetracyclineTigecyclineTigecyclineTigecyclineTigecyclineTigecyclineTetracyclineTigecyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetracyclineTetrac	1 0.25 1 1 1 0.25 4 4 >16 1 4 >16 1 3 * 8 >16 2 * 16 2 0.12 0.12 0.12 (133) 4 2 \$ 16 1 0.12 (133) 4 2 >16 2 * 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 2 \$ 10 0.12 (133) 4 (133) 4 (133) (13) (1	4 0.5 4 4 2 0.5 8 8 >16 1 1 8 >8 >16 4 3 16 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5 4 0.5	90.2 100.0 	1.0 0.0 	8.8 0.0° 				 Omadacycline was active against nonfermenters, inhibiting 64.6% of <i>A</i>. <i>baumannii</i> and 82.0% of <i>S</i>. <i>maltophilia</i> isolates at ≤4 mg/L Haemophilus influenzae (including β-lactamase-positive) and <i>M</i>. <i>catarrhalis</i> isolates were inhibited by low levels of omadacycline (MIC₉₀, 1 and 0.25 mg/L, respectively) The results of this surveillance study support the continued development of omadacycline in infections where susceptible and drug-resistant gram-negative isolates composed of <i>Enterobacteriaceae</i>, <i>A</i>. <i>baumannii</i>, <i>S</i>. <i>maltophilia</i>, <i>H</i>. <i>influenzae</i>, and <i>M</i>. <i>catarrhalis</i> are likely to occur, including CABP and ABSSSI MCKNOWLEDGEMENTS This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals, Inc.

^a Criteria as published by CLSI [2017] and EUCAST [2017]

Organisms include: Citrobacter amalonaticus (1), C. amalonaticus / farmeri (2), C. braakii (2), C. farmeri (1), C. freundii (25), C. freundii species complex (37), C. koseri (76), Enterobacter aerogenes (101), E. amnigenus (1), E. asburiae (9), E. cloacae (184), E. cloacae species complex (128), E. kobei (2), Escherichia coli (1,849), gram-negative rods in the family Enterobacteriaceae (1), Hafnia alvei (21), Klebsiella oxytoca (192), K. pneumoniae (830), Leclercia adecarboxylata (2), Morganella morganii (76), Pantoea agglomerans (5), Pluralibacter gergoviae (1), Proteus mirabilis (236), P. penneri (2), P. vulgaris group (31), Providencia rettgeri (8), P. stuartii (15), Raoultella ornithinolytica (9), R. planticola (3), Serratia liquefaciens (4), S. marcescens (153), S. odorifera (1), S. rubidaea (1), unspeciated Pantoea (1), unspeciated

Raoultella (6), unspeciated Serratia (2), Yersinia enterocolitica (1) ² Breakpoints from FDA Package Insert revised 2016

Organisms include: Enterobacter asburiae (9), E. cloacae (184), E. cloacae species complex (128), E. kobei (2) Organisms include: Enterobacter asburiae (2), E. cloacae (46), E. cloacae species complex (39)

Organisms include: Enterobacter aerogenes (101) and E. amnigenus (1)

³ Organisms include: Citrobacter amalonaticus (1), C. amalonaticus / farmeri (2), C. braakii (2), C. farmeri (1), C. freundii (25), C. freundii species complex (37), C. koseri

Organisms include: Morganella morganii (76), Proteus vulgaris group (31), Providencia rettgeri (8), P. stuartii (15) Organisms include: Acinetobacter johnsonii (2), A. junii (1), A. Iwoffii (4), A. radioresistens (3), A. schindleri (1), A. soli (1), A. ursingii (3), A. vivianii (1), unspeciated Acinetobacter (2)

Organisms include: 60 β-lactamase-positive and 298 β-lactamase-negative *H. influenzae*

Contact Information: Michael D. Huband, B.S. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: michael-huband@jmilabs.com

Clinical and Laboratory Standards Institute (2015). M07-A10. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard – tenth edition. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2017). M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. Wayne, PA: CLSI.

EUCAST (2017). Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0, January 2017. Available at http://www.eucast.org/clinical_breakpoints/. Accessed January 2017

Tygacil Package Insert, Pfizer Inc (Wyeth Pharmaceuticals) (2016). Available at www.tygacil.com. Accessed March 2017