Synergistic Activity of Colistin and Zidovudine (AZT) **Combinations against Colistin-Resistant Enterobacteriaceae**

Leonard R. Duncan¹, Robert K. Flamm¹, Anthony Coates^{2,3}, Yanmin Hu² ¹ JMI Laboratories, North Liberty, Iowa, USA; ² Institute for Infection and Immunity, St George's, University of London, London, UK; ³ Helperby Therapeutics Group plc, London, UK

Introduction

- Novel strategies are required to combat the increasing rates of antimicrobial resistance among gram-negative pathogens
- One rapid and attractive strategy is to investigate the therapeutic advantages exhibited by combinations of known antimicrobials
- Azidothymidine (AZT, zidovudine) is an antiretroviral thymidine analog that is typically used in combination with other drugs to treat or prevent HIV infection by inhibiting reverse transcriptase activity
- AZT also exhibits bactericidal antimicrobial activity against many Enterobacteriaceae species
- Colistin is a lipopeptide that is clinically used to treat infections caused by highly resistant isolates of some groups of gram-negative bacteria including Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii
- Previous work demonstrated that AZT-colistin combinations exhibited *in vitro* synergy against many antibiotic-resistant Enterobacteriaceae isolates and exhibited superior activity to either agent alone in a mouse peritoneal infection model
- This study confirmed and extended previous results on the *in vitro* antimicrobial potency, spectrum, and synergy of colistin-AZT combinations against recent Enterobacteriaceae isolates using Clinical and Laboratory Standards Institute (CLSI) reference testing methods

Materials and Methods

- The *in vitro* antimicrobial activities of colistin, AZT, AZT-colistin (1:2), AZT-colistin (1:1), and AZT-colistin (2:1) combinations were measured against a set of 333 Enterobacteriaceae clinical isolates
- 277 randomly selected Enterobacteriaceae clinical urinary tract infection isolates (Table 1) recently recovered from patients in Europe and the United States
- A partially overlapping set of 33 Enterobacteriaceae isolates (Table 2) with a colistin-resistant phenotype
- Additional isolates were from Enterobacteriaceae species that are intrinsically resistant to colistin (data not shown)
- AZT, ceftriaxone, and meropenem were purchased from United States Pharmacopeia, and colistin sulfate was purchased from Sigma-Aldrich
- CLSI broth microdilution and quality control methodologies were followed
- Cation-adjusted Mueller Hinton broth was the test medium
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretive criteria were used to categorize Enterobacteriaceae isolates as colistin-susceptible (MIC value, $\leq 2 \text{ mg/L}$) or colistin-resistant (MIC value, >2 mg/L)
- Because AZT exhibited a trailing inhibition of growth phenotype against some isolates, all MIC values were measured in 2 ways
- As the lowest concentration of compound that completely inhibited growth (indicated by 100%)
- As the lowest concentration of compound that significantly inhibited growth (indicated by SR, for significant reduction)
- Although this study evaluated AZT-colistin *in vitro* activity at 3 fixed ratios rather than in full checkerboard panels, Σ FIC index values could be calculated from the available data using the following equation:

FIC index = $\left(\frac{\text{MIC}(\text{drug A})_{\text{combinationAB}}}{\text{MIC}(\text{drug A})_{\text{alone}}}\right) + \left(\frac{\text{MIC}(\text{drug B})_{\text{combinationAB}}}{\text{MIC}(\text{drug B})_{\text{alone}}}\right)$

- Σ FIC index values were interpreted using 3 categories
- Synergy: Σ FIC value ≤0.5 – Indifference: Σ FIC value >0.5 to \leq 4 – Antagonism: ∑FIC value >4

Results

- AZT alone exhibited a trailing inhibition of growth phenotype for some isolates (Figure 1) that was largely absent for AZT-colistin combinations (Figure 2)
- The overall colistin resistance rate was 4% for the randomly selected Enterobacteriaceae isolates from species intrinsically susceptible to colistin (Table 1) – The isolate set was 20.9% resistant to ceftriaxone and 0.7% resistant to
- meropenem (Table 1) Against this isolate set, the MIC_{50/90} values for AZT and colistin were 2/16 mg/L and 0.25/0.25 mg/L using the SR reading criterion, respectively, and the MIC $_{50/90}$ values for AZT-colistin combinations were not significantly improved relative to colistin alone (Table 1)
- In contrast, all tested AZT-colistin combinations exhibited more potent MIC_{50/90} values than AZT or colistin alone against the subset of Enterobacteriaceae isolates with acquired colistin resistance (Table 2)
- The isolate set was 57.6% resistant to ceftriaxone and 12.1% resistant to meropenem (Table 2)
- The AZT and colistin $MIC_{50/90}$ values were 1/32 mg/L and 16/>64 mg/L, respectively, against this isolate set using the SR reading criterion, but the MIC_{50/90} values for AZT-colistin (1:1) were 0.25/1 mg/L This effect was observed with both MIC reading criteria
- In total, 25 of 33 (76%) colistin-resistant isolates exhibited at least 1 instance of synergy among the tested AZT-colistin combinations (Table 3) - For many isolates, synergy was observed with more than 1 of the tested AZTcolistin combinations
- AZT did not improve the activity of colistin against isolates of Enterobacteriaceae species that are intrinsically resistant to colistin (data not shown)

Table 1 Antimicrobial activity of AZT, colistin, and AZT-colistin combinations tested against 277 randomly selected Enterobacteriaceae isolates from species intrinsically susceptible to colistin

		EUCAST°				
Antimicropial agent [*]	MIC 50	MIC ₉₀ ^b	Range	% S	%	% R
AZT 100%	4	>64	0.06 to >64			
Colistin 100%	0.25	0.25	0.12 to >64	96.0		4.0
AZT-colistin (1:1) 100%	0.25 / 0.25	0.25 / 0.25	≤0.008 to 16			
AZT-colistin (1:2) 100%	0.12 / 0.25	0.12 / 0.25	0.06 to 8			
AZT-colistin (2:1) 100%	0.25 / 0.12	0.5 / 0.25	0.06 to 32			
AZT SR	2	16	≤0.03 to >64			
Colistin SR	0.25	0.25	0.12 to >64			
AZT-colistin (1:1) SR	0.25 / 0.25	0.25 / 0.25	≤0.008 to 16			
AZT-colistin (1:2) SR	0.12 / 0.25	0.12 / 0.25	0.03 to 8			
AZT-colistin (2:1) SR	0.25 / 0.12	0.5 / 0.25	0.03 to 32			
Ceftriaxone	0.06	>32	≤0.015 to >32	79.1	0.0	20.9
Meropenem	0.03	0.06	≤0.015 to	98.9	0.4	0.7

Criteria as published by EUCAST 2018.

- The MIC_{50/90} values for all 3 AZT-colistin combinations agreed within 2-fold

, zidovudine; 100%, 100% reading criterion; SR, significant reduction reading criterion; S, susceptible; I, intermediate; R, resistant. MIC values were read using 2 criteria: 100% inhibition of growth and significant reduction of growth. ^b For AZT-colistin combinations, the individual concentrations of AZT and colistin are shown.

rganisms included: Citrobacter freundii species complex (10), C. koseri (6), Enterobacter aerogenes (10), E. cloacae species complex (19), Escherichia coli (156), Klebsiella oxytoca (11), K. pneumoniae (65)

Table 2 Antimicrobial activity of AZT, colistin, and AZT-colistin combinations tested against 33 colistin-resistant Enterobacteriaceae isolates

		MIC (mg/L)	EUCAST°			
Antimicropial agent ^a		MIC ₉₀ ^b	Range	% S	%	
AZT 100%	2	>64	0.25 to >64			
Colistin 100%	16	>64	4 to >64	0.0		
AZT-colistin (1:1) 100%	0.5 / 0.5	2/2	0.12 to 16			
AZT-colistin (1:2) 100%	0.25 / 0.5	1/2	0.06 to 8			
AZT-colistin (2:1) 100%	0.5 / 0.25	2 / 1	0.12 to 32			
AZT SR	1	32	0.06 to >64			
Colistin SR	16	>64	4 to >64			
AZT-colistin (1:1) SR	0.25 / 0.25	1/1	0.12 to 16			
AZT-colistin (1:2) SR	0.25 / 0.5	1/2	0.06 to 8			
AZT-colistin (2:1) SR	0.5 / 0.25	2 / 1	0.06 to 32			
Ceftriaxone	32	>32	0.06 to >32	42.4	0.0	
Meropenem	0.03	16	≤0.015 to >32	81.8	6.1	

0% reading criterion; SR, significant reduction reading criterion; S, susceptible; I, intermediate: R, resistant ^a MIC values were read using 2 criteria: 100% inhibition of growth and significant reduction of growth. ^o For AZT-colistin combinations, the individual concentrations of AZT and colistin are shown. Criteria as published by FUCAST 2018

Organisms included: Enterobacter aerogenes (1), E. cloacae (2), E. cloacae species complex (7), Escherichia coli (8), Klebsiella oxytoca (1), K. pneumoniae (14)

Table 3 Synergism of AZT-colistin combinations against a subset of colistin-resistant Enterobacteriaceae

		MIC value (mg/L) (ΣFIC value)										
				100% reading c		Significant reduction reading criterion ^{a,b}						
Collection number Species		AZT	Colistin	AZT-colistin (1:1)	AZT-colistin (1:2)	AZT-colistin (2:1)	AZT	Colistin	AZT-colistin (1:1)	AZT-colistin (1:2)		
1004447	Enterobacter cloacae species complex	8	>64	0.25 / 0.25	0.5 / 1	0.5 / 0.25	8	>64	0.25 / 0.25	0.5 / 1		
1024263	Klebsiella pneumoniae	8	32	0.5 / 0.5 (0.08)	2 / 4 (0.38)	1 / 0.5 (0.14)	8	32	0.5 / 0.5 (0.08)	2 / 4 (0.38)		
1033266	Enterobacter cloacae species complex	8	>64	0.25 / 0.25	0.12 / 0.25	0.5 / 0.25	2	>64	0.25 / 0.25	0.12 / 0.25		
996443	Enterobacter cloacae species complex	16	64	0.25 / 0.25 (0.02)	0.12 / 0.25 (0.01)	0.5 / 0.25 (0.04)	16	64	0.25 / 0.25 (0.02)	0.12 / 0.25 (0.01)		
960660	Klebsiella pneumoniae	64	64	8 / 8 (0.25)	2 / 4 (0.09)	4 / 2 (0.09)	64	64	4 / 4 (0.13)	2 / 4 (0.09)		
953366	Klebsiella pneumoniae	>64	32	16 / 16	8 / 16	32 / 16	>64	32	16 / 16	8/16		
989319	Escherichia coli	>64	4	2/2	1/2	1/0.5	4	4	0.5 / 0.5 (0.25)	1 / 2 (0.75)		
991175	Enterobacter cloacae species complex	>64	>64	0.5 / 0.5	1/2	0.5 / 0.25	2	>64	0.5 / 0.5	0.5 / 1		
1021931	Enterobacter cloacae species complex	>64	>64	0.25 / 0.25	0.12 / 0.25	0.5 / 0.25	32	>64	0.25 / 0.25	0.12 / 0.25		
1040346	Klebsiella pneumoniae	>64	16	0.25 / 0.25	0.12 / 0.25	0.25 / 0.12	>64	16	0.25 / 0.25	0.12 / 0.25		

 Σ FIC. sum of fractional inhibitory concentrations: AZT, zidovudine Shaded areas indicate AZT-colistin combinations that exhibited synergism at the corresponding MIC values. \circ Σ FIC index values could not be calculated when 1 or both MIC values were off-scale. Only a subset of the tested colistin-resistant isolates is shown. A total of 76% (25/33) of the tested isolates exhibited synergism for at least 1 AZT-colistin combination.

Figure 1 Comparison of AZT MIC values read at 100% inhibition and significant reduction against 333 Enterobacteriaceae solates tested in this

AZT, zidovudine; 100%, 100% reading criterion; SR, significant reduction reading criterion. MIC values were read using 2 criteria: 100% inhibition of growth and significant reduction (SR) of growth.

Figure 2 Comparison of AZT-colistin (1:1) MIC values read at 100% inhibition and significant reduction against 333 Enterobacteriaceae isolates tested in this study

64														
4														
2													3	
6												2	3	
-										1	1			
)									1					
								4						
5							14	1	1	1				
25						197	2							
L2					59	10								
)6				2	4									
)3				1										
15														
800	1													
	≤0.008	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	
						AZT	-colistin (1:1) 1009	% MIC (m	g/L)				

AZT, zidovudine; 100%, 100% reading criterion; SR, significant reduction reading criterion MIC values were read using 2 criteria: 100% inhibition of growth and significant reduction (SR) of growth.

L00.0	

AZT-colistin (2:1)
0.5 / 0.25
1 / 0.5 (0.14)
0.5 / 0.25
0.5 / 0.25 (0.04)
4 / 2 (0.09)
32 / 16
1 / 0.5 (0.38)
0.5 / 0.25
0.5 / 0.25

0.25 / 0.12

	30
6	3
1	4
	8
1	6
3	3
	6
	7
	4
	1
64	>64

Conclusions

- AZT alone (but not AZT-colistin combinations) exhibited a trailing inhibition of growth MIC phenotype for some Enterobacteriaceae isolates
- Two reading criteria were used to confirm the following MIC and synergy results
- Against 33 Enterobacteriaceae isolates with acquired colistin resistance, the $MIC_{50/90}$ values for the AZT-colistin (1:1) combination (0.5/2 mg/L) were significantly lower than AZT (2/>64 mg/L) or colistin (16/>64 mg/L) alone
- The MIC_{50/90} values for the AZT-colistin (1:2) and AZT-colistin (2:1) combinations were similar to those observed for AZT-colistin (1:1)
- AZT-colistin combinations did not significantly improve the MIC_{50/90} values for the randomly selected isolate set, which exhibited a low level of colistin resistance
- Synergy was observed for AZT-colistin combinations against 25 of 33 (76%) of the tested colistin-resistant isolates
- Because full checkerboard panels were not evaluated, the actual frequency of in vitro synergy within the isolate set may be even higher than observed in this
- These results support the further exploration of AZT-colistin combinations for the treatment of colistin-resistant Enterobacteriaceae

Acknowledgements

We thank Jill Lindley, Dave Johnson, Ross Donatelli, and Lori Flanigan for their work on this project.

References

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org/fileadmin/src/media /PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf. Accessed January 2018.

Hu Y, Liu Y, Coates A (2019). Azidothymidine produces synergistic activity in combination with colistin against antibiotic-resistant Enterobacteriaceae. Antimicrob Agents Chemother 63: e01630-18.

Leber AL, editor (2016). Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In Clinical Microbiology Procedures Handbook, 4th Ed. Washington, D.C.: ASM Press.

Contact

Leonard R. Duncan, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 x240 Fax: (319) 665-3371 Email: leonard-duncan@jmilabs.com

To obtain a PDF of this poster: Scan the QR code or visit https://www .jmilabs.com/data/posters/ECCMID19 -AZT-colistin.pdf

Charges may apply. No personal information is stored.