Correlation between Broth Microdilution and Disk Diffusion Methods Results when Testing Ceftaroline against Methicillin-Resistant Staphylococcus aureus Using the 5-µg Ceftaroline Disk

Helio S. Sader, Paul R. Rhomberg, S.J. Ryan Arends, Timothy B. Doyle, Robert K. Flamm, Rodrigo E. Mendes
JMI Laboratories, North Liberty, Iowa, USA

Introduction

- Discrepancy rates between MIC and disk zones vary according to the percentage of isolates with MIC values within +/-1 doubling dilution of the breakpoints
- Although the prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) isolates that are ceftaroline-nonsusceptible (MIC, ≥2 mg/L) is generally low, it varies substantially by geographic region
- SCCmec plays an import role in the antimicrobial resistance characteristics, molecular epidemiology, and evolution of MRSA, and ceftaroline potency (MIC value) against MRSA varies according to the SCCmec type
- Data from the SENTRY Program for isolates consecutively collected worldwide in 2016 and 2017 shows ceftaroline susceptibility rates against MRSA varying from 95.1% in the United States to 88.7% in Europe, 77.8% in the Asia-Pacific region, and 74.7% in Latin America
- We evaluated the disk-MIC correlation when testing ceftaroline against a challenge collection of MRSA

Materials and Methods

- We evaluated 158 MRSA isolates, including 106 randomly selected isolates and 52 isolates with decreased susceptibility to ceftaroline (MIC, 1–16 mg/L)
- Isolates were tested by CLSI broth microdilution (BMD) method, and disk diffusion (DD) was performed with 5-µg disks and Mueller-Hinton agar from 2 manufacturers each; thus, there were 4 DD results for each MIC result
- EUCAST breakpoints for MIC and DD were applied
- Optimal DD breakpoints were determined by the error-rate bounded method
- Selected isolates (n=51) were characterized by whole genome sequencing, including all 25 isolates with ceftaroline MIC results ≥4 mg/L, 15 of 35 isolates with ceftaroline MIC results of 2 mg/L, and 11 of 54 isolates with a ceftaroline MIC of 1 mg/L

Results

- Ceftaroline 5-µg disk inhibition zones vs MIC values for all MRSA isolates are shown in Figure 1 in a bar graph and in Figures 2 and 3 in scattergrams
- The DD breakpoints that provided the lowest error rates were ≥17/<14 mm (susceptible/resistant; Figure 2)
- Very major (VM; false susceptible) errors: 0.0% for ≥I+2 and 0.7% for I±1, and an overall VM error rate of 0.5%
- Major (false resistance) error rates: 0.0%
- Minor error rates: 0.0% for \ge I+2, 25.9% for I±1, and 0.0% for \le I-2; 17.7% overall
- Error rates for the 2018 EUCAST DD breakpoints of ≥20/<17 mm (susceptible/resistant; Figure 2) were

VM error rates: 0.0%

- Major error rates: 0.0% for \leq I-2, and 3.9% for I±1; 2.7% overall
- Minor error rates: 0.0% for \ge I+2, 50.5% for I±1, and 19.9% for \le I-2; 40.0% overall
- Error rates for the 2018 EUCAST DD breakpoints for pneumonia (≥20/<20 mm for susceptible/resistant) and optimal breakpoints (≥18/<18 mm for susceptible/resistant) are shown in Figure 3
- Most isolates (26/39; 66.7%) exhibiting ceftaroline MIC values of ≥2 mg/L were recovered from countries in the Asia-Pacific region (Japan, South Korea, Taiwan, and Thailand; Table 1)

- The majority of isolates selected for molecular characterization belonged to clonal complex (CC) 5 (43/51; 84.3%), and the majority of CC5 isolates (39/43; 90.7%) showed ceftaroline MIC values of ≥2 mg/L (Tables 1 and 2)
- The most common SCC*mec* type observed among the 51 characterized isolates was type II (n= 34; 66.7%), followed by types I (n=9; 17.6%), IV (n=7; 13.7%), and III (n=1; 2.0%; Table 2)
- Ceftaroline-nonsusceptible (MIC, ≥2 mg/L) isolates were mainly SCC*mec* type II (30 of 40; 75.0%) and I (9 of 40; 22.5%); whereas ceftaroline-susceptible isolates were mainly SCC*mec* type IV (6 of 11; 54.5%) and II (4 of 11 tested; 36.4%; Table 2)
- Among isolates having a wild-type sequence for PBP2a, the ceftaroline MIC results varied between 1 mg/L and 4 mg/L with a modal MIC value at 1 mg/L (Table 3)
- Among isolates showing a wild-type sequence for PBP2a, only 35.7% of results were categorized as susceptible by disk diffusion, whereas 37.5% and 26.7% of results were categorized as intermediate and resistant, respectively (Table 3)
- Among isolates having PBP2a alterations in the allosteric site, 77.5% and 22.5% of disk diffusion results were categorized as resistant and intermediate, respectively, and there was no result in the susceptible range among these organisms (Table 3)
- The vast majority of disk diffusion results (95.5%) for the isolates carrying PBP2a alterations at both allosteric/transpeptidase sites were categorized as resistant, whereas 70.8%, 20.8%, and 8.3% of disk diffusion results for the isolates carrying PBP2a alterations at transpeptidase site were categorized as resistant, intermediate, and susceptible, respectively (Table 3)

Table 1 Distribution of methicillin-resistant *S. aureus* (MRSA) lineages and country of origin according to the ceftaroline MIC value

	0	O			
Clonal complex ^a Countries		isolates at	_		
	<u> </u>	2	4	8	16
CC5					
Argentina		1			
Chile		2			
Hungary	1				
Italy		2			
Japan	1	1	4		
South Korea		3	10	4	1
Mexico		1			
Peru		2	2		
Slovenia	1				
Spain	1				
Taiwan		1			
Thailand			1	1	
United States		1	2		
CC8					
Russia	2				
CC22					
Australia	1				
Ireland	1				
Italy		1			
New Zealand	1				
CC45					
Belgium	1				
CC239					
Australia	1				
Total	11	15	19	5	1

Clonal complex (CC) 5 represented by ST5 (29 isolates), ST105 (2), ST125 (1), ST228 (3), ST518 (1), ST764 (5), ST1110 (1) and ST2883 1); CC8, ST8; CC22, ST22; CC45, ST45; and CC239, ST239.

Table 2 Correlation of ceftaroline MIC values, clonal complex, and SCCmec type among 51 methicillin-resistant *S. aureus* (MRSA) strains submitted to whole genome sequencing

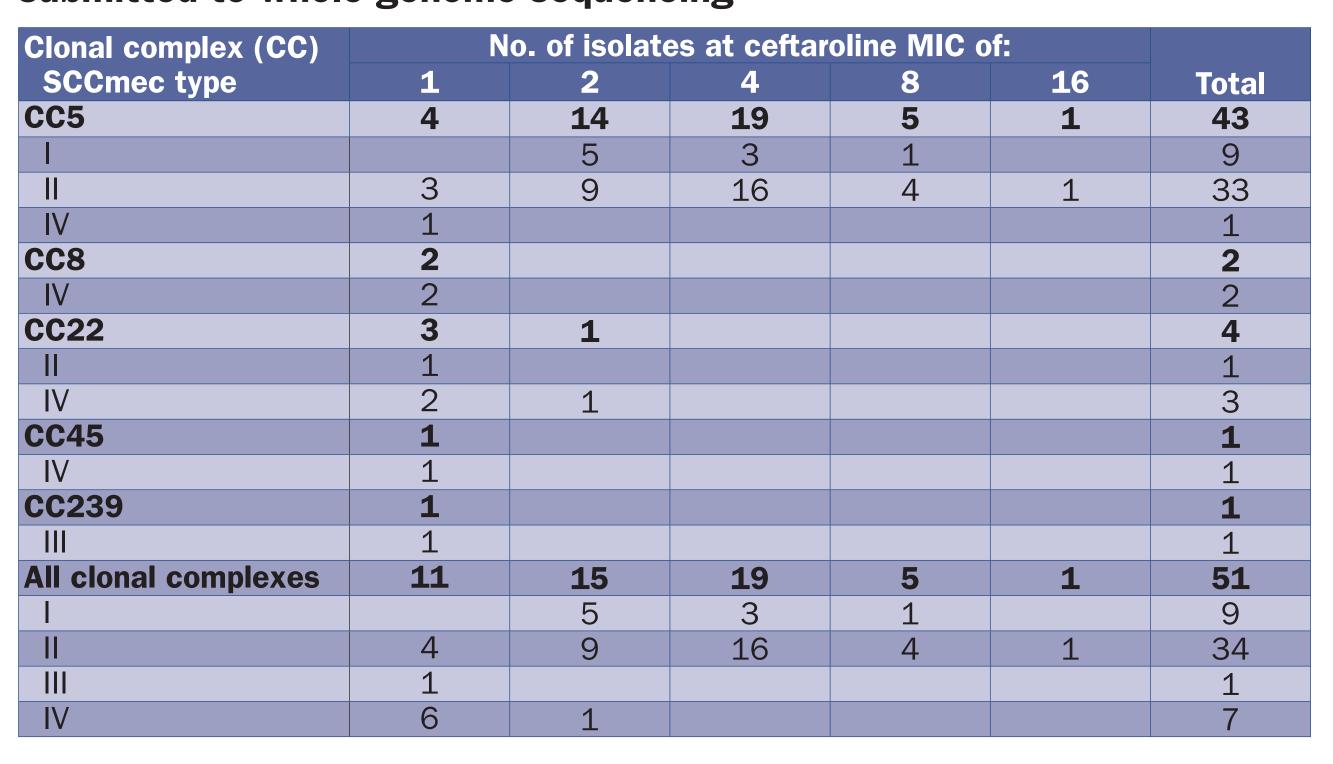
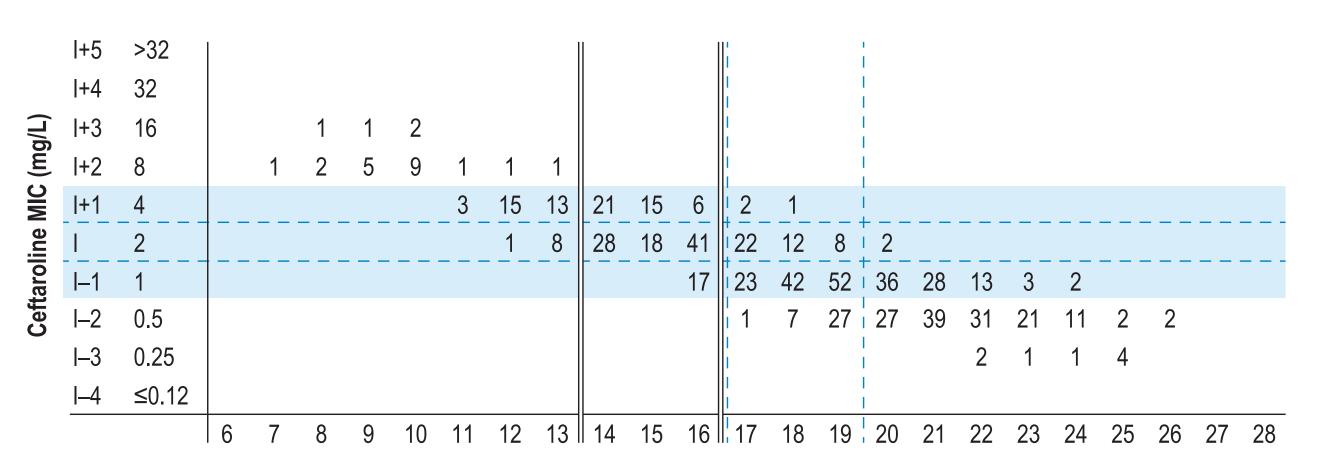



Figure 2 Scattergram of disk inhibition zones vs MIC values and table of error rates of ceftaroline MIC vs ceftaroline 5-µg disk for all MRSA isolates when current EUCAST breakpoints (broken lines; S at ≥20 mm and R at <17 mm for disk; non-pneumonia indications) and optimal disk breakpoints (double vertical lines; S at ≥17 mm and R at <14 mm) were applied

Zone diameter for ceftaroline 5-µg disk (disk A and disk B; MHA 1 and MHA 2) in mm EUCAST, European Committee on Antimicrobial Susceptibility Testing; MRSA, methicillin-resistant *S. aureus*

	Error rates for current EUCAST breakpoints of ≥20 mm (S) and <17 mm (R)						Error rates for the optimal calculated disk breakpoints of ≥17 mm (S) and <14 mm (R)									
MIC range	Number	Very major (%)	Major (%)	Minor (%)		MIC range	Number	Very major (%)	Major (%)	Minor (%)						
≥ +2	24	0	N/A	0		≥ +2	24	0	N/A	0						
I+1 to I–1	432	0	17 (3.94)	218 (50.46)		I+1 to I–1	432	3 (0.69)	0	112 (25.93)						
≤ –1	176	N/A	0	35 (19.89)		≤ -1	176	N/A	0	0						
Total	632	0	17 (2.69)	253 (40.03)		Total	632	3 (0.47)	0	112 (17.72)						

Figure 1 Ceftaroline 5-µg disk inhibition zones vs MIC values for all methicillin-resistant *S. aureus* isolates

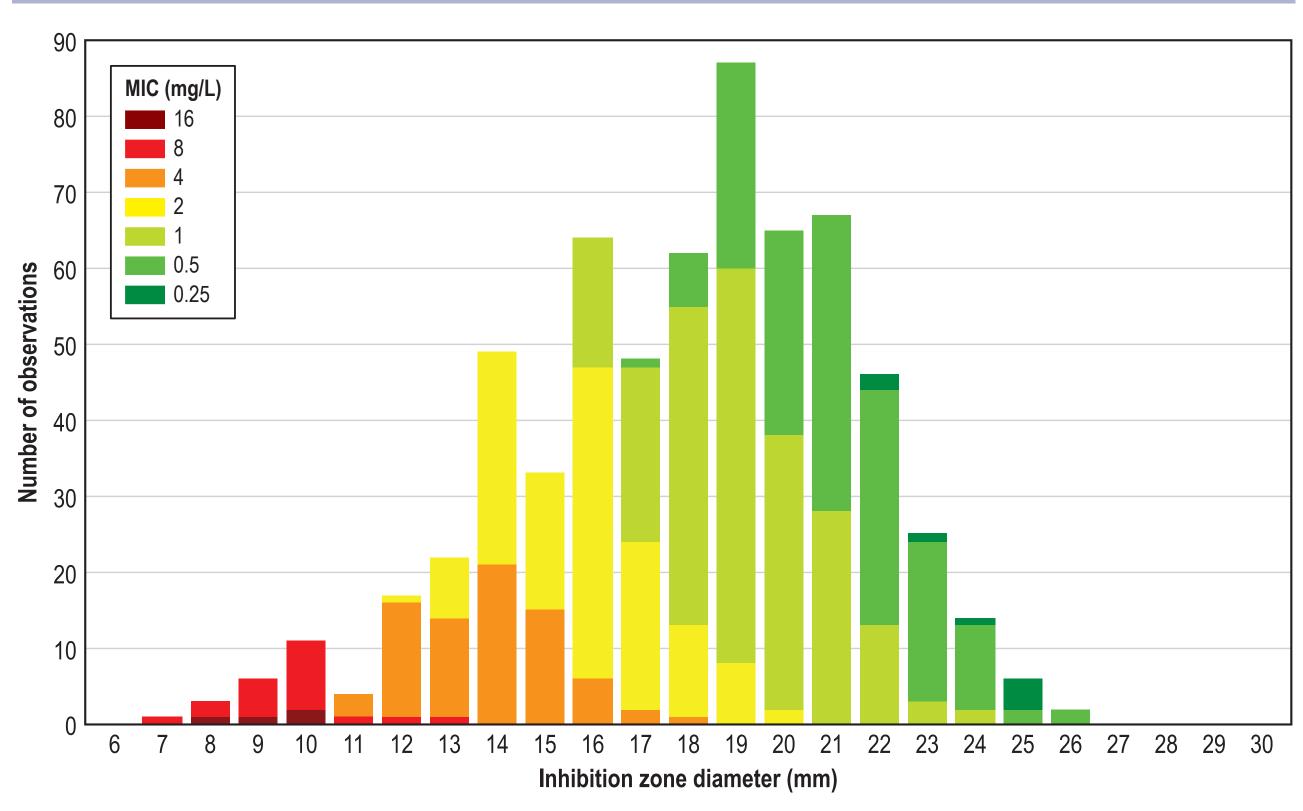
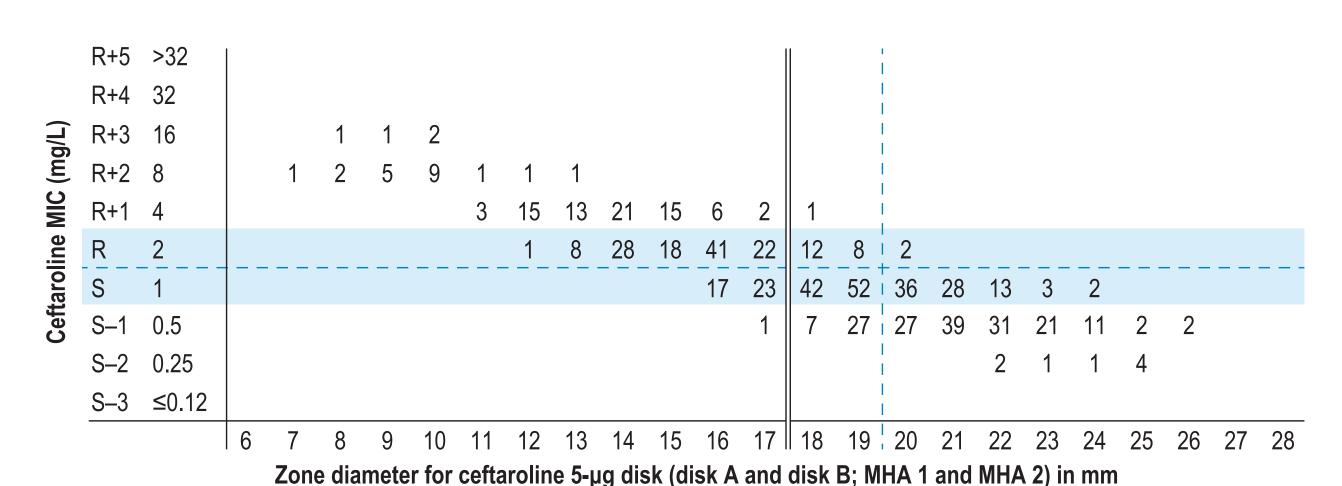



Figure 3 Scattergram of disk inhibition zones vs MIC values and table of error rates of ceftaroline MIC vs ceftaroline 5-µg disk for all MRSA isolates when current EUCAST breakpoints (broken lines; S at ≥20 mm and R at <20 mm for disk; pneumonia) and optimal disk breakpoints (double vertical lines; S at ≥18 mm and R at <18 mm) were applied

EUCAST, European Committee on Antimicrobial Susceptibility Testing; MRSA, methicillin-resistant S. aureus

ı	of ≥20 mm (S) and <20 mm (R)		of ≥18 mm (S) and <18 mm (R)							
MIC range	Number	Very major (%)	Major (%)	MIC range	Number	Very major (%)	Major (%				
≥R+1	100	0	N/A	≥R+1	100	1 (1.0)	N/A				
S+R	356	2 (0.56)	134 (37.64)	S+R	356	22 (6.18)	40 (11.24)				
≤S-1	176	N/A	35 (19.89)	≤S-1	176	N/A	1 (0.57)				

Table 3 Correlation of ceftaroline MIC, disk zone results (5-µg) and with PBP2a alterations detected among isolates selected for further molecular characterization

BP2a status		Disk zone diameters (mm)																			
Ceftaroline MIC (mg/L)	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	% S	%	%R
/ild type																					
										3	2	5	3	7	5	2	3	2			
							1	3	1	3	5	1	5	1					35.7	37.5	26.7
						1	1	1	1												
llosteric site ^a						_	_	_	_												
										4		3	1								
							3	5	3	12	2	2	1						0.0	22.5	77.5
								2	1	1	_										1110
llosteric and anspeptidase sites ^{a,b}																					
						1	2	2	3	1	1		1	1							
					3	13	7	14	5	2									1.5	3.0	95.5
	1	2	5	9	1	1	1														
6		1	1	2																	
ranspeptidase sites ^b																					
• •													2		2						
							4	4	6	3	2	1							8.3	20.8	70.8

This table depicts 4 zone diameter results for each MIC value (2 manufacturers for ceftaroline disks and 2 manufacturers for Mueller-Hinton agar). Ceftaroline breakpoints of $\leq 1/\geq 4$ mg/L (susceptible/resistant) for MIC and ≥ 24 mm (light blue cells; susceptible)/ ≤ 20 mm (dark blue cells; resistant) for disk diffusion were applied as established by EUCAST.

^aAllosteric site represented by amino acid residues 27–326 ^bTranspeptidase domain represented by residues 327–668

Conclusions

- Elevated discrepancy rates were observed between DD and BMD, with a clear tendency of isolates that were intermediate by BMD being categorized as resistant by DD when current EUCAST breakpoints were applied
- DD breakpoints (non-pneumonia) should be moved 3 mm downward to provide the lowest intermethod error rates
- Isolates having a wild-type PBP2a exhibited ceftaroline MIC results (1–4 mg/L) overlapped with those carrying single (1–4 mg/L) or multiple mutations (2–16 mg/L)
- DD was not able to satisfactorily separate the group of MRSA isolates with no alterations from those with alterations or between those having alteration(s) at different regions of PBP2a

Acknowledgements

This study was sponsored by Pfizer and Allergan.

References

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M23Ed5E. Development of in vitro susceptibility testing criteria and quality control parameters, 5th edition. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M02Ed13E. Performance standards

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibilty tests for bacteria that grow aerobically; approved standard eleventh edition. Wavne. PA: CLSI.

for antimicrobal disk susceptibility tests; Thirteenth Edition. Wayne, PA: CLSI.

DePalma G, Turnidge J, Craig BA (2017). Determination of disk diffusion susceptibility testing interpretive criteria using model-based analysis: development and implementation. *Diagn Microbiol Infect Dis* 87: 143-149.

Lahiri SD, McLaughlin RE, Whiteaker JD, et al. (2015). Molecular characterization of MRSA isolates bracketing the current EUCAST ceftaroline-susceptible breakpoint for Staphylococcus aureus: the role of PBP2a in the activity of ceftaroline. *J Antimicrob Chemother* 70: 2488-2498.

Metzler CM, DeHaan RM (1974). Susceptibility tests of anaerobic bacteria: statistical and clinical considerations. *J Infect Dis* 130: 588-594.

Turnidge J, Paterson DL (2007). Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20: 391-408.

Contact

Helio S. Sader, MD, PhD
JMI Laboratories
345 Beaver Kreek Centre, Suite A
North Liberty, IA 52317
Phone: (319) 665-3370
Fax: (319) 665-3371
Email: helio-sader@jmilabs.com