Carbapenem-resistant P. aeruginosa is usually caused by a combination of intrinsic resistance mechanisms including de-repression of the chromosomal cephalosporinase AmpC, up-regulation of resistance-nodulation-division (RND) efflux systems, and acquisition of plasmid-borne carbapenemases. Among these mechanisms the most common is carbapenem-resistant AmpC, followed by RND efflux pumps. Carbapenemases are also an important resistance mechanism in Enterobacteriaceae species.

Enterobacteriaceae that could be the reservoir for these genes. Among all antimicrobial agents tested, colistin retained greatest activity. The phenotypic detection of OprD was performed on Tn4401a. The Tn4401a, carrying enzyme was amplified with primers targeting the serine-carbapenemase encoding gene. These isolates were detected in a single hospital in states. 1. Clinical and Laboratory Standards Institute (2012).

KPC-producing Pseudomonas aeruginosa from the United States: What is Next?

RESULTS

Conclusions: Two KPC-producing Enterobacteriaceae strains were detected in a single hospital in 28 USA hospitals.

Materials and Methods:

Among all antimicrobial agents tested, colistin retained greatest activity. Two KPC-negative isolates were collected in a hospital with high incidence of KPC-producing Enterobacteriaceae. These isolates were detected in a single hospital in states. 1. Clinical and Laboratory Standards Institute (2012).

Materials and Methods:

Conclusions: Two KPC-producing Enterobacteriaceae isolates were collected in a hospital with high incidence of KPC-producing Enterobacteriaceae. These isolates were detected in a single hospital in states. 1. Clinical and Laboratory Standards Institute (2012).

Materials and Methods:

Conclusions: Two KPC-producing Enterobacteriaceae isolates were collected in a hospital with high incidence of KPC-producing Enterobacteriaceae. These isolates were detected in a single hospital in states. 1. Clinical and Laboratory Standards Institute (2012).