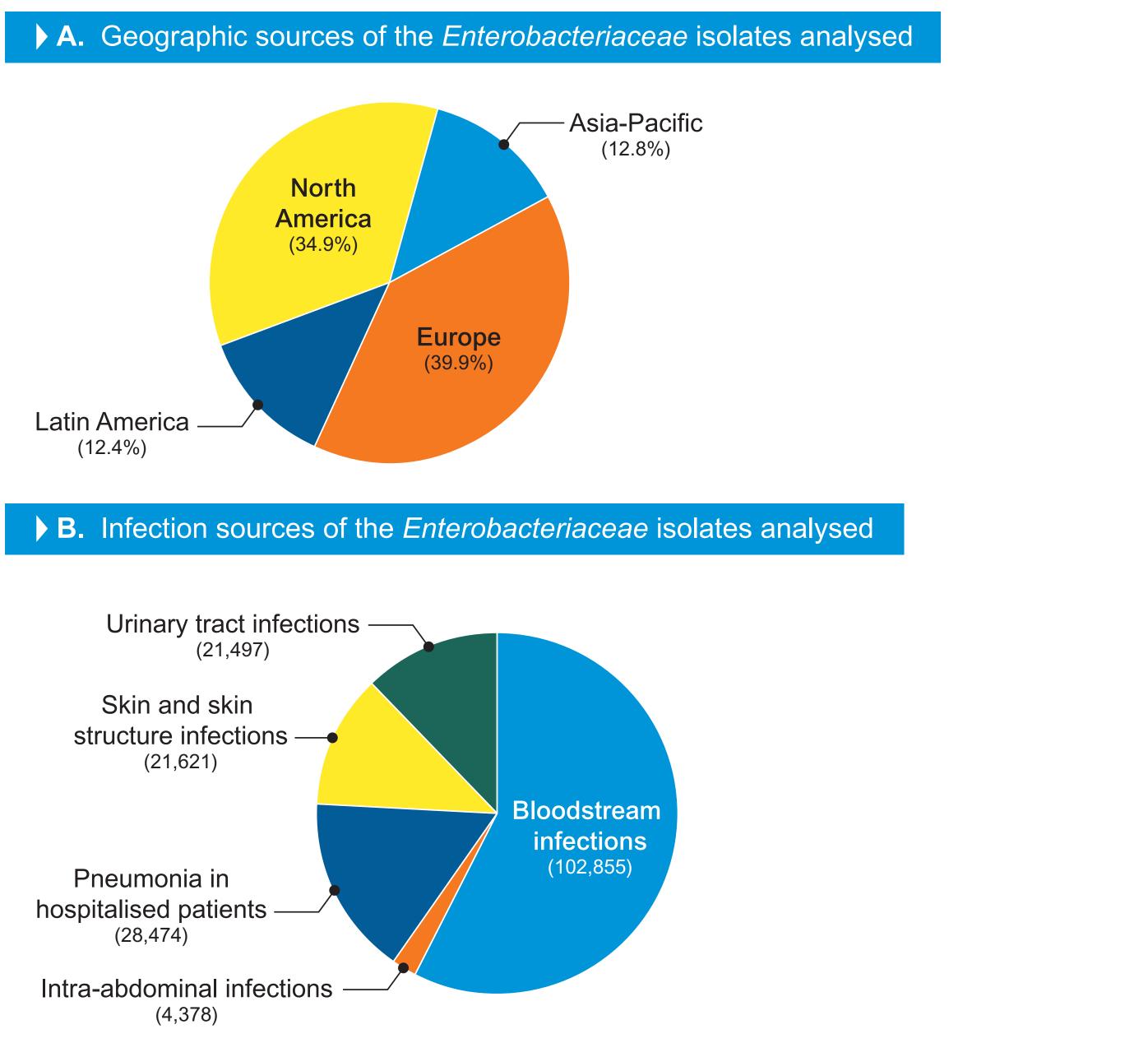
## **ECCMID 2018** Poster #P1073

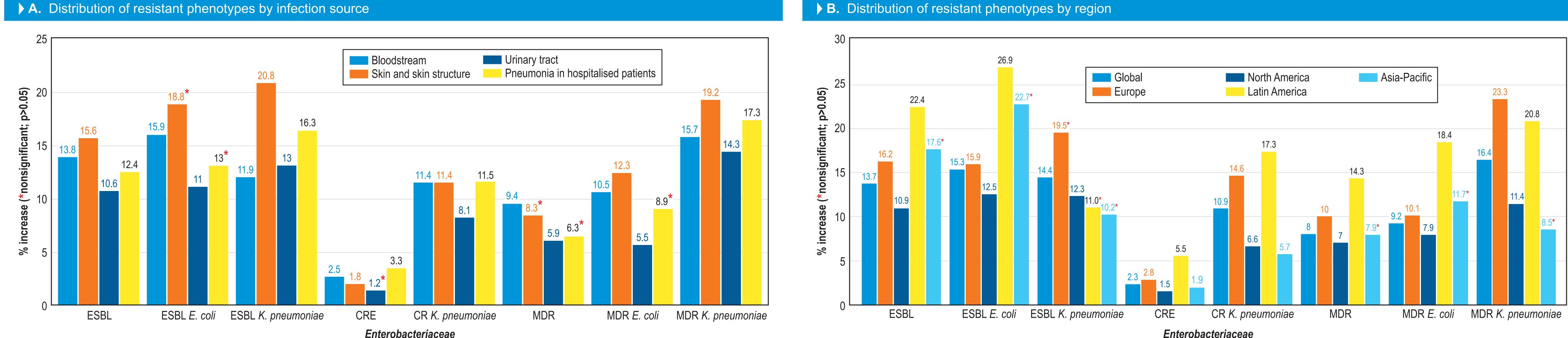
# Variations in the Occurrence of ESBL, CRE, and MDR Phenotypes among Enterobacteriaceae Isolates: Results from 20 Years of the SENTRY Antimicrobial Surveillance Program M Castanheira<sup>1</sup>, CJ Smith<sup>1</sup>, RE Mendes<sup>1</sup>, R Canton<sup>2</sup>, HS Sader<sup>1</sup>, RN Jones<sup>1</sup>

<sup>1</sup>JMI Laboratories, North Liberty, Iowa, USA; <sup>2</sup>Servicio de Microbiología, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain


## Introduction

- Acquired resistance in *Enterobacteriaceae* species limits the antimicrobial therapeutic options for infections caused by these isolates and is a growing concern
- Among the numerous resistance mechanisms observed in *Enterobacteriaceae*, β-lactamases are especially worrisome due to the broad use and safety profile of β-lactam agents
- *Enterobacteriaceae* isolates producing extended-spectrum β-lactamases (ESBLs) and/or carbapenemases (CRE) are usually resistant to most or all  $\beta$ -lactam agents
- These isolates often co-harbour resistance mechanisms to other antimicrobial classes that are carried on mobile genetic elements, which promote the dissemination of these resistance genes
- Multidrug resistance (MDR) that was once uncommon in *Enterobacteriaceae* isolates has now been reported with increasing frequency due to the accumulation of acquired resistance genes
- In this study, we analysed the trends of resistance phenotypes among 178,825 Enterobacteriaceae isolates collected in 199 hospitals from 42 countries over 20 years (1997–2016) of the SENTRY Antimicrobial Surveillance Program

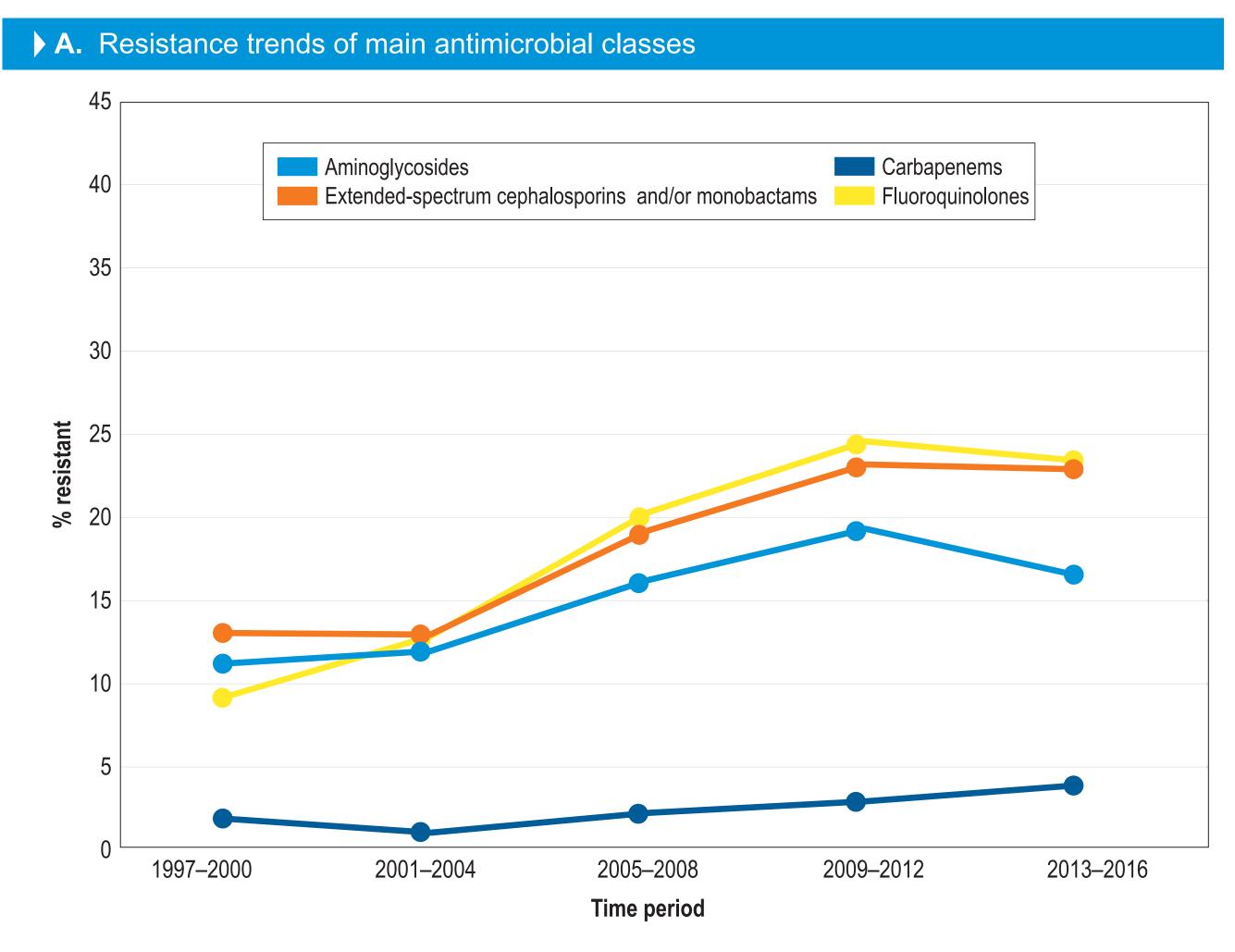
## Materials and Methods


- A total of 178,825 Enterobacteriaceae isolates were collected (1/patient) during 1997–2016 in 199 medical centres from 42 countries (Figure 1A)
- Each participating centre was asked to collect consecutive bacterial isolates from bloodstream, skin and skin structure, pneumonia from hospitalised patients, urinary tract, and intra-abdominal tract (Figure 1B) specimens determined to be significant by local criteria as the reported probable cause of infection

### Figure 1 Geographic and infection sources of the Enterobacteriaceae isolates analysed



- Organisms were susceptibility tested by reference broth microdilution methods in a central laboratory according to the current Clinical and Laboratory Standards Institute (CLSI) documents
- Quality control (QC) was performed according to CLSI guidelines (M7, 2018), and all QC MIC results were within acceptable ranges as published in CLSI documents
- Categorical interpretations for antimicrobial agents were those found in CLSI criteria in M100 (2018), EUCAST breakpoint tables (version 7.1, January 2018), and/or United States Food and Drug Administration (US FDA) website
- The ESBL-phenotype was defined for *Escherichia coli*, *Klebsiella pneumoniae*, Klebsiella oxytoca, and Proteus mirabilis as an MIC value ≥2 mg/L for ceftriaxone, ceftazidime, and/or aztreonam (CLSI, 2018)
- CRE was defined as any isolate exhibiting doripenem, imipenem, and/or meropenem MIC values at ≥2 mg/L
- Proteus mirabilis and indole-positive Proteeae were categorised as CRE if doripenem and/or meropenem MIC values were at ≥2 mg/L due to intrinsically elevated imipenem MIC values
- MDR *Enterobacteriaceae* was defined as any isolate nonsusceptible (CLSI criteria) to  $\geq 1$  agent in  $\geq 3$  of the following antimicrobial classes: broad-spectrum cephalosporins, carbapenems, broad-spectrum penicillin combined with a β-lactamase inhibitor, fluoroquinolones, aminoglycosides, glycylcyclines, and the polymyxins
- Resistance to fluoroquinolones (levofloxacin, ciprofloxacin, and moxifloxacin), aminoglycosides (amikacin, gentamicin, and tobramycin), cephalosporins/ monobactams (cefepime, ceftazidime, ceftriaxone, aztreonam), carbapenems (doripenem, imipenem, and meropenem), and polymyxins (colistin and polymyxin B) was defined as resistance to any agent tested within the class
- Statistical analysis was performed by chi-square test to compare the 1997–2000 period to the 2013–2016 period using SAS 9.4

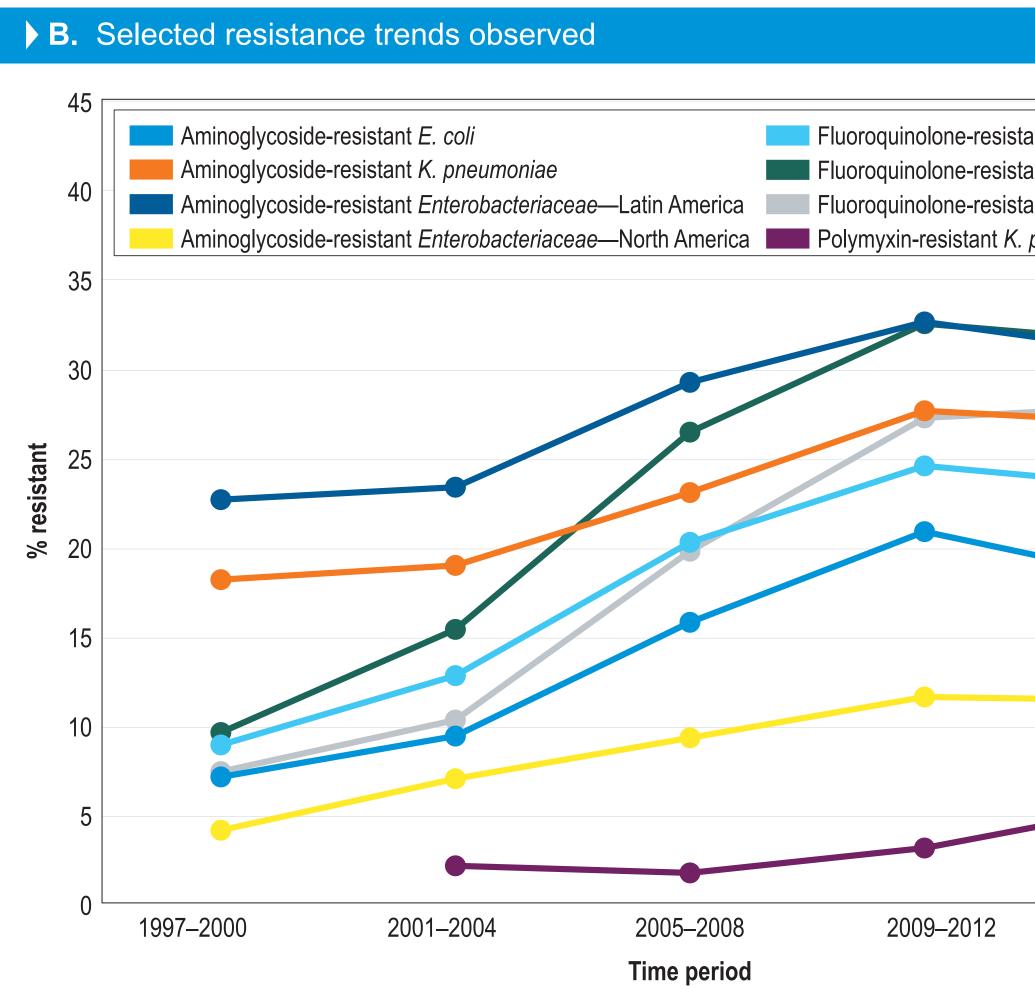

- Enterobacteriaceae displaying an ESBL-phenotype (n=24,313) increased worldwide from 10.3% to 24.0%
- This increase was observed for all infection sources and geographic regions, except Asia-Pacific (Figure 2)



## Results

### - Isolates exhibiting an ESBL-phenotype were mainly *Escherichia coli* (47.5%) and *Klebsiella pneumoniae* (43.7%)

- A statistically significant increase of 2.3% (from 0.6% to 2.9%; p<0.05) was noted for CRE isolates over time
- Similar trends were noted for all regions and infection sources, except urinary tract infections (Figure 2)
- Carbapenem-resistant *Klebsiella pneumoniae* was the main driver for the CRE increase and comprised 71.1% of the CRE isolates




### Figure 2 Selected antimicrobial resistance trends for all *Enterobacteriaceae*

**Contact Information:** Mariana Castanheira, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: mariana-castanheira@jmilabs.com

- The 4 most common CRE species after K. pneumoniae were cloacae (9.0%), Serratia marcescens (5.4%), Escherichia coli ( E. aerogenes (3.9%)
- MDR rates significantly increased from 7.3% to 15.3%, but similar observed in all regions or infection sources
- A significant increase in MDR was noted in Europe, North and but not Asia-Pacific, and in isolates from bloodstream and urin infections (Figure 2)








To obtain a PDF of this poster: Scan the QR code

Visit https://www.jmilabs.com/data /posters/ECCMID2018-SENTRY -Phenotypes-Enterobacteriaceae.pdf

Charges may apply. No personal information is stored.



| <i>robacter</i><br>%), and | <ul> <li>The most common MDR species were K. pneumoniae (35.2%), E. coli (30.2%)</li> <li>E. cloacae (9.7%), P. mirabilis (6.3%), and S. marcescens (5.3%), comprising 86.7% of the MDR isolates</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nds were not               | <ul> <li>A significant increase over time in MDR rates was noted for K. pneumoniae<br/>(16.4% increase) and E. coli (9.2% increase; Figure 2)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| n America,<br>tract        | <ul> <li>Significant increases in resistance to specific antimicrobial classes were observed<br/>among the overall isolates and main species (Figure 3)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | <ul> <li>Aminoglycoside resistance increased in <i>E. coli</i> (7.0% to 18.0%) and<br/><i>K. pneumoniae</i> (18.1% to 26.9%) globally and increased overall in North<br/>America (4.0% to 11.3%) and Latin America (22.6% to 30.8%) (Figure 3)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            | <ul> <li>Fluoroquinolone resistance increased from 8.8% to 23.3% among the<br/>Enterobacteriaceae isolates, which was mainly due to <i>E. coli</i> (9.5% to 31.4%)<br/>and <i>K. pneumoniae</i> (7.3% to 27.9%) (Figure 3)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | • A significant increase (p<0.0001) in polymyxin/colistin resistance rates was noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| probacteriaceae<br>pli     | for <i>K. pneumoniae</i> from 2.0% in 2001–2004 (when this compound started being tested) to 5.5% in 2013–2016 (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| oli<br>neumoniae           | tested) to 5.5% in 2013–2016 (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| oli<br>neumoniae           | <ul> <li>tested) to 5.5% in 2013–2016 (Figure 3)</li> <li>Conclusions</li> <li>A significant overall increase in β-lactam resistance was observed in all geographic regions and infection types monitored during the 20 years of the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| oli<br>neumoniae           | <ul> <li>tested) to 5.5% in 2013–2016 (Figure 3)</li> <li>Conclusions</li> <li>A significant overall increase in β-lactam resistance was observed in all geographic regions and infection types monitored during the 20 years of the SENTRY Program and included: <ul> <li>Resistance to cephalosporins (ESBL-phenotype) among <i>E. coli, Klebsiella</i></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                |
| oli<br>neumoniae           | <ul> <li>tested) to 5.5% in 2013–2016 (Figure 3)</li> <li>Conclusions</li> <li>A significant overall increase in β-lactam resistance was observed in all geographic regions and infection types monitored during the 20 years of the SENTRY Program and included:</li> <li>Resistance to cephalosporins (ESBL-phenotype) among <i>E. coli, Klebsiella</i> spp., and <i>P. mirabilis</i></li> </ul>                                                                                                                                                                                                                                                                                                                              |
| oli<br>neumoniae           | <ul> <li>tested) to 5.5% in 2013–2016 (Figure 3)</li> <li>Conclusions</li> <li>A significant overall increase in β-lactam resistance was observed in all geographic regions and infection types monitored during the 20 years of the SENTRY Program and included: <ul> <li>Resistance to cephalosporins (ESBL-phenotype) among <i>E. coli, Klebsiella</i> spp., and <i>P. mirabilis</i></li> <li>Carbapenem-resistance overall, but mainly among <i>K. pneumoniae</i></li> </ul> </li> <li>Resistance to other antimicrobial classes important for the treatment of</li> </ul>                                                                                                                                                  |
| oli<br>neumoniae           | <ul> <li>tested) to 5.5% in 2013–2016 (Figure 3)</li> <li>Conclusions</li> <li>A significant overall increase in β-lactam resistance was observed in all geographic regions and infection types monitored during the 20 years of the SENTRY Program and included: <ul> <li>Resistance to cephalosporins (ESBL-phenotype) among <i>E. coli, Klebsiella</i> spp., and <i>P. mirabilis</i></li> <li>Carbapenem-resistance overall, but mainly among <i>K. pneumoniae</i></li> </ul> </li> <li>Resistance to other antimicrobial classes important for the treatment of infections caused by <i>Enterobacteriaceae</i> also increased</li> <li>A remarkable increase of MDR isolates was also noted, and these organisms</li> </ul> |

## Acknowledgements

The authors thank all participants of the SENTRY Antimicrobial Surveillance Program for their work in providing bacterial isolates.

## References

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http://www.eucast.org/fileadmin/src/media /PDFs/EUCAST\_files/Breakpoint\_tables/v\_8.0\_Breakpoint\_Tables.pdf. Accessed January 2018.

Castanheira M, Mendes RE, Jones RN, et al. (2016). Changes in the frequencies of beta-lactamase genes among Enterobacteriaceae isolates in U.S. hospitals, 2012 to 2014: Activity of ceftazidime-avibactam tested against beta-lactamase-producing isolates. Antimicrob Agents Chemother 60: 4770–4777.

CDC (2015). Tracking CRE infections. Available at: http://www.cdc.gov/hai/organisms /cre/TrackingCRE.html. Accessed April 2016.