Abstract

Background: Omadacycline (formerly PTK 0796) is a semisynthetic derivative of minocycline and is currently under development for the treatment of bacterial infections, including community-acquired pneumonia (CAP) and urinary tract infections. The Investigational New Drug (IND) application for omadacycline has been submitted to the US Food and Drug Administration (FDA) for Phase 3 development.

Objectives: To evaluate the clinical and microbiological activity of omadacycline against community-acquired respiratory infections (CARI) and urinary tract infections (UTI) due to microorganisms isolated from China.

Methods: Omadacycline has been tested in more than 100 clinical trials, including Phase 3 trials in patients hospitalized in China (11 studies), Hong Kong, and Taiwan. In these studies, omadacycline was evaluated in the treatment of CAP and UTIs due to a variety of Gram-positive and Gram-negative pathogens.

Results: Omadacycline was very potent against most gram-positive and gram-negative pathogens isolated from Greater China, and retained activity against methicillin-resistant isolates (MRSA; n=299; MIC\textsubscript{50}/90, 0.12/0.5 mg/L), and had similar activity among geographic regions.

Conclusions: Omadacycline showed potent activity against gram-positive and gram-negative pathogens isolated from Greater China, and retained activity against methicillin-resistant isolates. The clinical development of omadacycline in the geographic region is ongoing.

Materials and Methods

Organic collection

Organic collection was performed from consecutive patients hospitalized in China (11 studies), Hong Kong, and Taiwan. Organisms were isolated from sputum, blood, and urine.

Quality control and results interpretation

Quality control and results interpretation were performed in accordance with CLSI (Clinical and Laboratory Standards Institute) guidelines for antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—tenth edition (CLSI M6-A10, 2013).

Results

- Omadacycline was very potent against the following bacteria from all geographic regions: Escherichia coli (MIC\textsubscript{50}/90, 2/4 mg/L), β-haemolytic streptococci (BHS; highest MIC, 1 mg/L), viridans group streptococci (94) 0.25 mg/L, and Enterococcus faecium (MIC\textsubscript{50}/90, 0.12/0.25 mg/L and 93.5% of isolates were inhibited at these ECVs (Table 3)).

- Omadacycline showed potent activity against most gram-positive and gram-negative pathogens isolated from Greater China, and retained activity against methicillin-resistant isolates (MRSA; n=299; MIC\textsubscript{50}/90, 0.12/0.5 mg/L), and had similar activity among geographic regions.

Conclusions

- Omadacycline showed potent activity against gram-positive and gram-negative pathogens isolated from Greater China.

- There were no detectable changes in susceptibility profiles between China, Hong Kong, and Taiwan.

- The results indicate the potential for clinical development of omadacycline in the geographic regions tested.

Acknowledgments

This study was supported by JMI Laboratories (Shanghai, China).

References

Clinical and Laboratory Standards Institute (2013). *M7-A9*. Methods for determination of minimal inhibitory concentrations (MICs) forINFUTEC OGM® ECOV (ECF or EC) for organism groups against omadacycline

<table>
<thead>
<tr>
<th>Organism/organism group</th>
<th>MIC\textsubscript{90} (mg/L)</th>
<th>MIC\textsubscript{50} (mg/L)</th>
<th>ECV IC\textsubscript{min} (mg/L)</th>
<th>IC\textsubscript{90} (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.06</td>
<td>0.25</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>0.12</td>
<td>0.5</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>0.06</td>
<td>0.25</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 1 Antimicrobial activity of omadacycline tested against the main organisms and organism groups of isolates from all countries combined.

<table>
<thead>
<tr>
<th>Organism/organism group</th>
<th>MIC\textsubscript{90} (mg/L)</th>
<th>MIC\textsubscript{50} (mg/L)</th>
<th>ECV IC\textsubscript{min} (mg/L)</th>
<th>IC\textsubscript{90} (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.06</td>
<td>0.25</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>0.12</td>
<td>0.5</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>0.06</td>
<td>0.25</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
<td>>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 2 Antimicrobial activity of omadacycline tested for geographic region.