ECCMID 2018 Poster #P1140

Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa from the SENTRY Surveillance Program, 1997–2016 D Shortridge¹, AC Gales², JM Streit¹, A Tsakris³, RN Jones¹

¹JMI Laboratories, North Liberty, Iowa, United States; ²Federal University of São Paulo, São Paulo, Brazil; ³University of Athens, Athens, Greece

Introduction

- The SENTRY Antimicrobial Surveillance Program (SENTRY) was established in 1997 and encompasses over 800,000 bacterial isolates from over 200 medical centres worldwide
- Among the pathogens tested, *Pseudomonas aeruginosa* remains a common cause of multidrug-resistant (MDR) bloodstream infections and pneumonias in hospitalized patients
- In the present study, we reviewed geographic and temporal trends in resistant phenotypes of *P. aeruginosa* over 20 years of the SENTRY Program

Materials and Methods

- During the period from 1997 to 2016, 54,185 clinically significant, *P. aeruginosa* isolates were submitted for testing in the SENTRY Program from over 200 medical centres representing the Asia-Pacific, European (including Turkey and Israel), Latin American, and North American regions
- Only 1 isolate per patient per infection episode was submitted
- Infection types included bloodstream infection (BSI), pneumonia in hospitalised patients (PIHP), skin and skin structure infection (SSSI), intra-abdominal infection (IAI), and urinary tract infection (UTI)
- Isolates were identified by standard algorithms and/or matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) at each site and confirmed at the central laboratory
- Susceptibility (S) testing was performed by the CLSI broth microdilution method and interpreted using CLSI and EUCAST 2018 criteria
- Included among the antimicrobials tested were amikacin, cefepime, ceftazidime, ciprofloxacin, colistin (tested 2006–2016), meropenem, and piperacillin-tazobactam
- Resistant phenotypes analysed using EUCAST criteria were: multidrugresistant (MDR; nonsusceptible to at least 1 antimicrobial in \geq 3 drug classes), extensively drug-resistant (XDR; nonsusceptible to at least 1 agent in all but ≤2 drug classes), pandrug-resistant (PDR), ceftazidimenonsusceptible (NS), meropenem-NS, and colistin-resistant

Results

- The most common infection type from which *P. aeruginosa* was isolated was PIHP (44.8%) followed by BSI (27.4%) and SSSI (19.7%) as shown in Figure 1
- PIHP had a higher rate of MDR (33.4%) compared to BSI (27.0%) (Figure 2)
- MDR rates over time are shown in Table 1, ranging from a high of 34.2% in 2005–2008 to a low of 27.1% in 2013–2016
- XDR rates also peaked in 2005-2008 at 20.1%
- PDR isolates were rare throughout the study period, totaling 47 isolates over 20 years
- Rates of ceftazidime-NS isolates were highest (27.5%) in the 2005–2008 period and have decreased to 19.4% most recently
- Rates of meropenem-NS isolates were highest (27.6%) in 2009–2012 and have decreased to 22.7%
- Activity of antimicrobial agents tested is shown in Table 2 for all isolates and MDR, XDR, and PDR phenotypes with CLSI and EUCAST clinical breakpoints
- Colistin was the most active agent against isolates with MDR and XDR phenotypes at 98.7% and 98.3% susceptible, respectively (Table 2)
- PDR isolates that were tested against colistin (n=46) were resistant
- Amikacin was the second most active agent, inhibiting 85.6% of all isolates and 14.9% of PDR isolates, at a breakpoint of $\leq 8 \text{ mg/L}$

1997–2016

Resistance group ^a	1997–2000	2001–2004	2005–2008	2009–2012	2013-2016	1997–2016
Multidrug-						
resistant	27.1%	30.7%	34.2%	31.8%	27.1%	29.7%
Extensively						
drug-resistant	12.4%	16.4%	20.1%	18.5%	14.5%	16.1%
Pandrug-resistant	0.0%	0.0%	0.2%	0.1%	0.1%	0.1%
Ceftazidime-NS	22.8%	23.4%	27.5%	25.5%	19.4%	23.1%
Meropenem-NS	19.2%	24.9%	27.3%	27.6%	22.7%	24.1%
Colistin- resistant	N/A ^b	N/A	1.2%	0.8%	0.5%	0.7%
Total	9,600	7,928	8,154	11,773	16,730	54,185

esistance phenotypes using EUCAST (2018) criteria ^b Not applicable, drug not tested

- 23.5%/10.2% (Figure 3)

- decades
- 2013–2016
- 2009

Table 1 Frequency of resistance phenotypes for *P. aeruginosa* from

 Isolates with the MDR or XDR phenotype were most frequently isolated in Latin America with 45.1% MDR and 29.0% XDR, followed by Europe with 32.3%/19.2%, Asia-Pacific with 28.4%/15.1%, and North America with

- Latin America also had a higher frequency of ceftazidime-NS and meropenem-NS isolates than the other regions

• Figure 4 shows the percent MDR by 4-year increments for each region - Europe and North America had a relatively stable MDR rate across 2

- Latin America had the highest rate overall, though it has shown a decline in

- Asia-Pacific showed a large increase in 2005-2008, with a decline since

Table 2 Activity of antimicrobial agents when tested against MDR, XDR, and PDR isolates of *P. aeruginosa*

	MIC (mg/L)		CLSI ^a			EUCAST ^a				
Antimicrobial agent	50%	90%	Range	%S ^b	%	%R	%S	%	%R	
All (n=54,185)	1	I						I		
Amikacin	≤4	16	≤4 to >32	90.0	2.5	7.5	85.6	4.5	10.0	
Cefepime	4	>16	≤0.5 to >16	78.7	10.9	10.4	78.7		21.3	
Ceftazidime	≤2	>16	≤2 to >16	76.9	5.2	17.9	76.9		23.1	
Ciprofloxacin	≤0.5	>2	≤0.5 to >2	72.6	4.4	23.0	67.3		32.7	
Colistin	1	2	≤0.5 to >4				99.3		0.7	
Meropenem	0.5	>8	≤0.12 to >8	75.8	6.5	17.7	75.8	13.0	11.1	
Piperacillin-tazobactam	8	>64	≤1 to >64	72.5	12.2	15.3	72.5		27.5	
MDR (n=16,091)										
Amikacin	8	>32	≤4 to >32	68.7	7.5	23.8	58.0	10.7	31.3	
Cefepime	16	>16	≤0.5 to >16	36.4	31.0	32.6	36.4		63.6	
Ceftazidime	>16	>16	≤2 to >16	35.9	12.7	51.4	35.9		64.1	
Ciprofloxacin	>2	>2	≤0.5 to >2	28.8	8.0	63.2	20.5		79.5	
Colistin	1	2	≤0.5 to >4				98.7		1.3	
Meropenem	8	>8	≤0.12 to >8	27.6	15.6	56.9	27.6	35.3	37.1	
Piperacillin-tazobactam	64	>64	≤0.5 to >64	24.6	30.4	45.0	24.6		75.4	
XDR (n=8,723)										
Amikacin	16	>32	≤4 to >32	54.7	10.0	35.3	42.6	12.1	45.3	
Cefepime	>16	>16	≤0.12 to >16	14.3	36.9	48.8	14.3		85.7	
Ceftazidime	>16	>16	≤2 to >16	14.9	14.9	70.2	14.9		85.1	
Ciprofloxacin	>2	>2	≤0.5 to >2	14.0	7.4	78.6	8.3		91.7	
Colistin	1	2	≤0.5 to >4				98.3		1.7	
Meropenem	>8	>8	≤0.12 to >8	7.7	13.7	78.5	7.7	35.4	56.9	
Piperacillin-tazobactam	>64	>64	≤0.5 to >64	6.0	33.7	60.4	6.0		94.0	
PDR (n=47)										
Amikacin	>32	>32	≤4 to >32	29.8	14.9	55.3	14.9	14.9	70.2	
Cefepime	>16	>16	0.25 to >16	12.8	27.7	59.6	12.8		87.2	
Ceftazidime	>16	>16	4 to >16	8.5	17.0	74.5	8.5		91.5	
Ciprofloxacin	>2	>2	2 to >2	4.3	8.5	87.2	2.1		97.9	
Colistin	4	>4	4 to >4				0.0		100.0	
Meropenem	>8	>8	0.5 to >8	10.6	12.8	76.6	10.6	34.0	55.3	
Piperacillin-tazobactam	>64	>64	32 to >64	0.0	46.8	53.2	0.0		100.0	

MDR, multidrug-resistant; XDR, extensively drug-resistant; PDR, pandrug-resistant using EUCAST (2018) criteria ^a Criteria as published by CLSI (2018) and EUCAST (2018)

S. susceptible: I. intermediate: R. resistan

Figure 1 Infection types from which isolates were cultured

Figure 2 Percent multidrug-resistant (MDR) and extensively drug-resistant (XDR) *P. aeruginosa* isolates by infection type

Contact Information: Dee Shortridge, PhD **JMI** Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: dee-shortridge@jmilabs.com

Figure 3 Percent of multidrug-resistant (MDR), extensively drug-resistant (XDR), ceftazidime-nonsusceptible (NS), and meropenem-nonsusceptible (NS) *P. aeruginosa* by region

Figure 4 Percent multidrug-resistant P. aeruginosa by region and 4-year period

To obtain a PDF of this poster: Scan the QR code

Visit https://www.jmilabs.com/data/posters /ECCMID2018-pseudomonas-resistance

Charges may apply. o personal information is stored.

Conclusions

- Over the 20 years of SENTRY surveillance, the rates of MDR and other resistant phenotypes for *P. aeruginosa* were highest in 2005–2008 and decreased more recently
- The continent with the highest rate of MDR isolates was Latin America
- Latin America and Asia-Pacific showed a decrease of MDR phenotype in 2013-2016
- Colistin and amikacin were the most active drugs tested against all phenotypes except PDR
- Due to the differences in breakpoints between the 2 breakpoint setting groups, EUCAST resistance rates are generally higher than CLSI, with the exception of meropenem
- The higher resistance rates for EUCAST are due, at least in part, to the lack of an intermediate category
- Whether the trend of decreasing resistance in *P. aeruginosa* is maintained will be determined in future SENTRY and other international-level surveillance reports

Acknowledgements

The authors thank all participants of the SENTRY Program for their work in providing bacterial isolates.

References

Clinical and Laboratory Standards Institute (2018). M100Ed28E. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—eleventh edition. Wayne, PA: CLSI.

EUCAST (2018). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, January 2018. Available at: http:// www.eucast.org/fileadmin/src/media/PDFs /EUCAST_files/Breakpoint_tables/v_8.0 Breakpoint_Tables.pdf. Accessed January 2018.