Assessment of Resistance Development to KBP-7072 by Serial-Passage and Single-Step Mutational Selection

MD Huband¹, RE Mendes¹, Q Liu², Li Li², J Zhang³, J Thompson¹, GE Strand¹, and M Castanheira¹ ¹ JMI Laboratories, North Liberty, Iowa, USA; ² KBP Biosciences Co., Ltd., Jinan, China; ³ KBP Biosciences USA Inc., Princeton, NJ, USA

Introduction

- KBP-7072 is a third-generation tetracycline (aminomethylcycline) antibacterial in clinical development for the treatment of acute bacterial skin and skin structure infection (ABSSSI), community-acquired bacterial pneumonia (CABP), and complicated intra-abdominal infection (cIAI).
- This study assessed the potential for resistance to KBP-7072 to develop in tetracycline-susceptible (S) and tetracycline-resistant (R) Acinetobacter baumannii, Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae clinical isolates and quality control (QC) strains during single-step selection and 10-day serial-passage (multi-step selection) studies.

Methods and Materials

- Bacterial isolate identifications were confirmed by JMI Laboratories using matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).
- Broth microdilution and agar dilution susceptibility testing was performed in triplicate according to Clinical and Laboratory Standards Institute (CLSI) M07 (2018) and M100 (2021) guidelines.
- The modal MIC values obtained became the baseline broth microdilution and agar dilution MIC values.
- American Type Culture Collection (ATCC) QC strains recommended by CLSI were incorporated into each testing event
- Single-step resistance testing was conducted using 4x, 8x, and 16x the baseline KBP-7072 agar dilution MIC value.
- Inoculated agar plates were incubated at 35°C in ambient atmosphere and examined for growth at 24 hours.
- Plates lacking visible colonies at 24 hours were incubated further and re-examined at 48 hours.
- Putative resistant colonies were counted and compared to the starting inoculum to calculate the single-step frequency of resistance.
- Representative colonies were selected from the agar plates demonstrating the highest KBP-7072 MIC values, transferred twice on drug-free agar plates, followed by confirmatory broth microdilution susceptibility testing against KBP-7072 and comparator agents.
- The modal broth microdilution KBP-7072 MIC value served as the baseline MIC for the serial-passage resistance testing
- Each strain was tested for susceptibility to KBP-7072 in 100 µL volumes using an initial starting inoculum of approximately 5 x 10⁵ CFU/mL.
- Subsequent daily passages utilized the entire well contents from the last well demonstrating visible growth from the previous day's test.
- This process was repeated for up to 10-daily transfers or until the KBP-7072 MIC value reached >64 mg/L.

Results

- respectively.

- (Table 1).

KBP-7072 single-step frequency of resistance values for S. aureus ATCC 29213 and S. aureus 1088771 (tetracyclineresistant) were very low at <9.4 x 10^{-10} and <8.6 x 10^{-10} ,

– No resistant mutants were recovered at 4x, 8x, or 16x the baseline KBP-7072 MIC value (Table 1)

KBP-7072 MIC values remained stable (no increase in MIC value) against S. aureus ATCC 29213 and increased 4-fold (highest MIC, 0.25 mg/L) for S. aureus 1088771 over the course of 10-daily serial passages (Figures 1–2).

Single-step frequency of resistance values for S. pneumoniae ATCC 49619 and S. pneumoniae 1119350 (penicillin- and tetracycline-resistant) ranged from >2.3 x 10^{-6} to <8.2 x 10^{-9} at 4x to 16x the baseline KBP-7072 MIC (Table 1).

• A \leq 4-fold increase in KBP-7072 MIC values (highest MIC, 0.03 mg/L) were observed following drug free passage and confirmatory MIC testing, indicating that the singlestep mutants obtained with S. pneumoniae ATCC 49619 (8x and 16x the baseline KBP-7072 MIC) and S. pneumoniae 1119350 (4x, 8x, and 16x the baseline KBP-7072 MIC) were not stably resistant (Table 1)

 KBP-7072 MIC values increased modestly (up to 4-fold; highest MIC, 0.03 mg/L) against S. pneumoniae ATCC 49619 and S. pneumoniae 1119350 following 10-daily serial passages (Figures 3–4).

KBP-7072 single-step frequency of resistance was low, ranging from 9.0 x 10⁻⁸ at 4x MIC to < 9.6 x 10⁻¹⁰ at 16x MIC for A. baumannii NCTC 13304 and from 2.7 x 10⁻⁷ at 4x MIC to <8.7 x 10⁻¹⁰ at 16x MIC for *A. baumannii* 1044704 (tetracycline-, levofloxacin-, and carbapenem-resistant)

In serial passage testing, KBP-7072 MIC values increased 8-fold (0.12 to 1 mg/L) for A. baumannii NCTC 13304 and 4-fold (0.5 to 2 mg/L) for A. baumannii 1044704 over the course of 10-daily serial passages (Figures 5–6).

- KBP-7072 MIC values remained elevated by \leq 8-fold against A. baumannii NCTC 13304 and A. baumannii 1044704 following drug-free passage and confirmatory MIC testing (data not shown).

– These mutants also demonstrated elevated MIC values to other tetracycline class agents (data not shown).

 Single-step frequency of resistance to KBP-7072 was very low (<8.3 x 10^{-10}) against *E. coli* ATCC 25922 and no resistant mutants were recovered (Table 1).

– Similarly, single-step frequency of resistance to KBP-7072 was low against a *E. coli* 1093450 (tetracycline- and levofloxacin-resistant; ESBL-phenotype), ranging from 1.6 x 10^{-7} at 4x MIC to <2.6 x 10^{-10} at 16x MIC (Table 1).

In serial passage testing, KBP-7072 MIC values increased 8-fold (0.12 to 1 mg/L) for *E. coli* ATCC 25922 and >128-fold (0.5 to >64 mg/L) for *E. coli* 1093450 over the course of 10-daily serial passages (Figures 7–8).

– KBP-7072 and tetracycline-class comparator agent MIC values remained elevated against *E. coli* following drug-free passage and confirmatory MIC testing (data not shown).

Table 1. KBP-7072 single-step frequency of resistance development

Isolate	KBP-7072 Agar dilution	Starting Inoculum (CFU/mL	Mutation frequency			
	MIC (mg/L)		Volume Plated (mL)	4x MIC	8x MIC	16 x
A. baumannii	0.12	1.0 x 10 ⁹	1 mL	9.0 x 10 ^{-8 a}	1.4 x 10 ⁻⁸	< 9.6 >
(NCTC 13304)			0.1 mL	9.6 x 10 ⁻⁹	<9.6 x 10 ⁻⁹	<9.6
A. baumannii	0.5	1.2 x 10 ⁹	1 mL	2.7 x 10 ⁻⁷	1.1 x 10 ⁻⁷	<8.7 >
(1044704)			0.1 mL	2.4 x 10 ⁻⁷	<8.7 x 10 ⁻⁹	<8.7
E. coli	0.12	1.2 x 10 ⁹	1 mL	<8.3 x 10 ⁻¹⁰	<8.3 x 10 ⁻¹⁰	<8.3 >
(ATCC 25922)			0.1 mL	<8.3 x 10 ⁻⁹	<8.3 x 10 ⁻⁹	<8.3
E. coli	0.5	3.8 x 10 ⁹	1 mL	2.1 x 10 ⁻⁸	5.2 x 10 ⁻¹⁰	<2.6 >
(1093450)			0.1 mL	1.6 x 10 ⁻⁷	<2.6 x 10 ⁻⁹	<2.6
S. aureus	0.12	1.1 x 10 ⁹	1 mL	<9.4 x 10 ⁻¹⁰	<9.4 x 10 ⁻¹⁰	< 9.4 >
(ATCC 29213)			0.1 mL	<9.4 x 10 ⁻⁹	<9.4 x 10 ⁻⁹	<9.4
S. aureus	0.12	1.2 x 10 ⁹	1 mL	<8.6 x 10 ⁻¹⁰	<8.6 x 10 ⁻¹⁰	<8.6 >
(1088771)			0.1 mL	<8.6 x 10 ⁻⁹	<8.6 x 10 ⁻⁹	<8.6
S. pneumoniae	0.008	1.2 x 10 ⁹	1 mL	>2.5 x 10 ^{-7 a}	>2.5 x 10 ^{-7 a}	>2.5 >
(ATCC 49619)			0.1 mL	>2.5 x 10 ^{-6 a}	8.2 x 10 ⁻⁹	<8.2
			0.01 mL	6.6 x 10 ⁻⁷	<8.2 x 10 ⁻⁸	<8.2
S. pneumoniae	0.015	1.3 x 10 ⁹	1 mL	>2.3 x 10 ^{-7 a}	>2.3 x 10 ^{-7 a}	>2.3 >
(1119350)			0.1 mL	>2.3 x 10 ^{-6 a}	>2.3 x 10 ^{-6 a}	>2.3 >
			0.01 mL	<7.6 x 10 ⁻⁸	<7.6 x 10 ⁻⁸	<7.6

Serial passage day

^a A hazy lawn of growth was observed (no individual colonies), therefore a value of 301 was used to estimate the frequency of resistance value.

Conclusions

- S. aureus KBP-7072 demonstrated a very low propensity for resistance development in single-step selection studies, and no resistant mutants were recovered. In serial passage testing, KBP-7072 MIC values remained unchanged or increased modestly (up to 4-fold; highest MIC, 0.25 mg/L) over the course of 10-daily serial passages.
- S. pneumoniae In single-step selection studies, KBP-7072 demonstrated a low rate of resistance development with no more than a 4-fold MIC increase (highest MIC, 0.03 mg/L) following drug free passage and confirmatory MIC testing. In serial passage testing, KBP-7072 MIC values increased modestly (2- to 4-fold; highest MIC, 0.03 mg/L) over the course of 10-daily passages.
- A. baumannii KBP-7072 demonstrated a low propensity for resistance development against A. baumannii in singlestep selection studies. In serial passage testing, KBP-7072 MIC values increased 4- to 8-fold (highest MIC, 2 mg/L) over the course of 10-daily serial passages. Putative resistant mutants from the single-step and serial passage studies against A. baumannii demonstrated stably elevated MIC values to KBP-7072 and other tetracycline class agents.
- *E. coli* In single-step selection studies, KBP-7072 demonstrated a low propensity for resistance development against *E. coli*. In serial passage testing, KBP-7072 MIC values increased 8- to >128-fold (highest MIC, >64 mg/L) over the course of 10-daily serial passages. Putative resistant mutants from the single-step and serial passage studies against E. coli demonstrated stably elevated MIC values to KBP-7072 and other tetracycline class agents.

Acknowledgements

This study was performed by JMI Laboratories and supported by KBP Biosciences Co., Ltd., which included funding for services related to preparing this poster.

References

CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI standard MO7. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

CLSI. Performance standards for antimicrobial susceptibility testing. 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021.

Contact

10^{-6 a} x 10⁻⁸

Michael D. Huband, Associate Directo JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: michael-huband@jmilabs.com

To obtain a PDF of this poster: Scan the QR code or visit https:// www.jmilabs.com/data/posters /ECCMID2021_KBP7072wSMA andSPpdf

Charges may apply. No personal information is stored.