# Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria Isolated from Patients Hospitalised with Bacterial Pneumonia in Western Europe and Eastern Europe: Results from the SENTRY Program (2018–2020) HS Sader, JM Streit, LR Duncan, MD Huband, D Shortridge, CG Carvalhaes, RE Mendes, M Castanheira JMI Laboratories, North Liberty, Iowa, USA

Introduction

- The SENTRY Antimicrobial Surveillance Program (SENTRY) monitors the frequency of occurrence and antimicrobial susceptibility of organisms from various infection types worldwide.
- Bacterial isolates are consecutively collected according to the infection type and sent to a central monitoring laboratory where they are tested for susceptibility.
- In this study, we evaluated the frequency and antimicrobial susceptibility patterns of pathogens collected by the SENTRY Program from patients hospitalized with bacterial pneumonia in Europe during 2018–2020.

# Materials and Methods

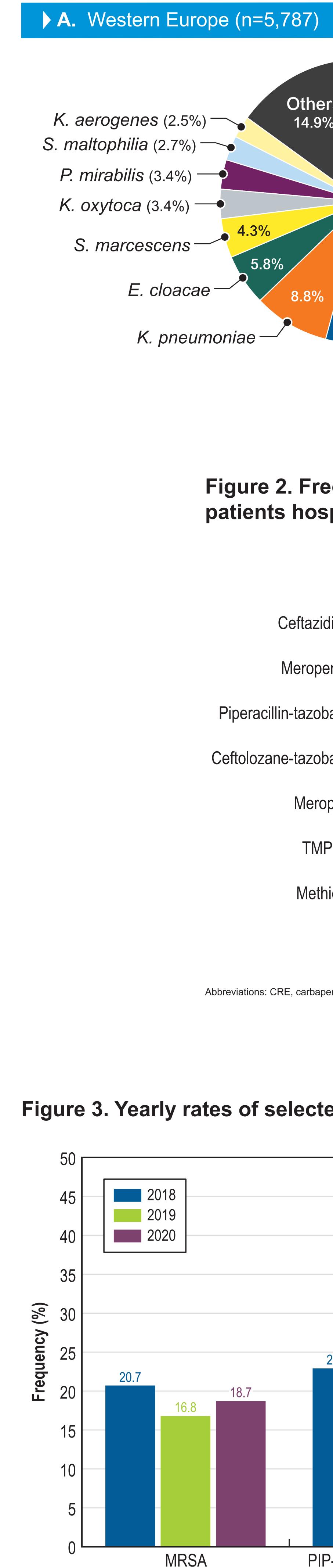
#### **Organism collection**

- A total of 7,931 bacterial isolates were consecutively collected (1/patient) from 37 medical centres located in Western Europe (W-EU) and the Eastern Europe and Mediterranean region (designated here as E-EU), as follows:
- W-EU: 5,787 isolates from 24 centres located in 10 countries, including: Belgium, France, Germany, Ireland, Italy, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.
- E-EU: 2,144 isolates from 13 centres located in 10 countries, including: Belarus, the Czech Republic, Greece, Hungary, Israel, Poland, Romania, Russia, Slovenia, and Turkey.
- Each participating centre was asked to collect consecutive bacterial isolates from lower respiratory tract specimens determined to be significant by local criteria as the reported probable cause of pneumonia.
- Qualified sputum samples and isolates from invasive sampling, such as transtracheal aspiration, bronchoalveolar lavage, and protected brush samples were accepted.
- Carbapenem-resistant *Enterobacterales* (CRE) were defined as any isolate displaying MIC values of >2 mg/L for meropenem or imipenem.
- Imipenem was not applied for *Proteus mirabilis* or indole-positive Proteeae.

#### Susceptibility methods

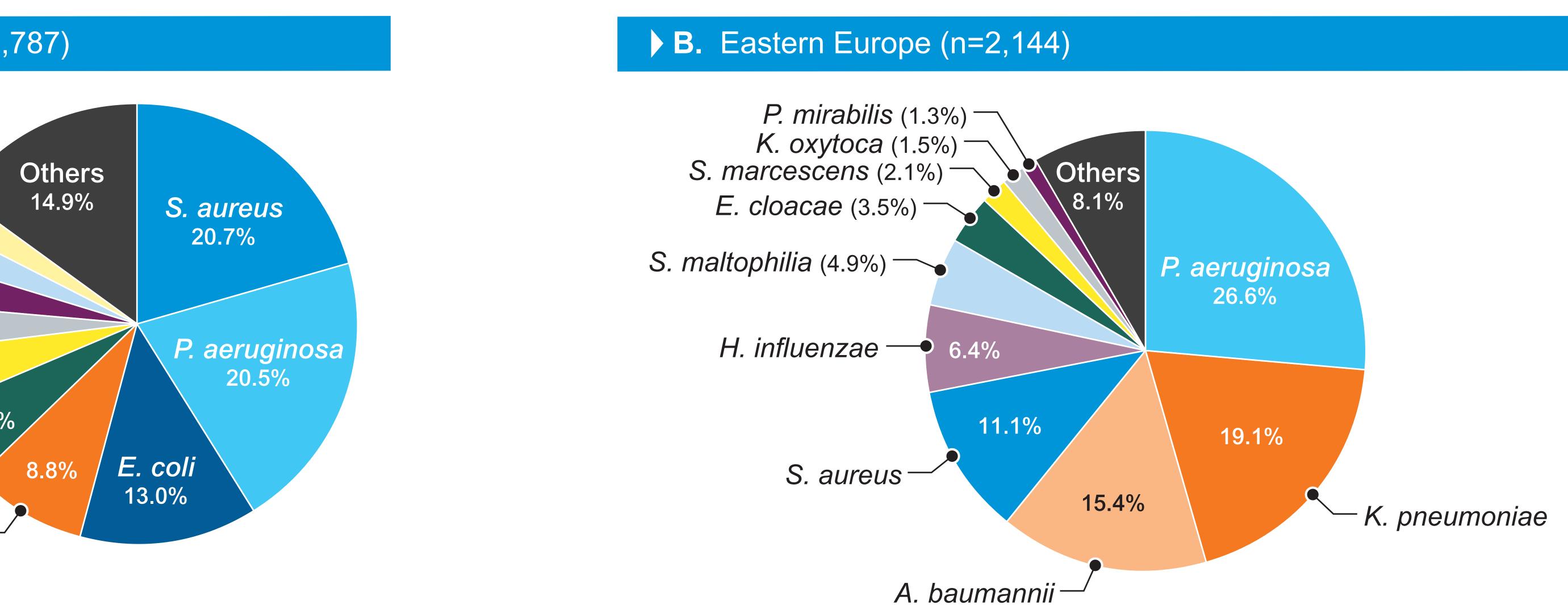
- Organisms were tested for susceptibility by reference broth microdilution methods at JMI Laboratories.
- MIC panels were prepared at JMI Laboratories and broth microdilution tests were conducted according to the current Clinical and Laboratory Standards Institute (CLSI) documents.
- Susceptibility percentages and quality control validation were based on CLSI (M100) 2021 criteria.

### Results

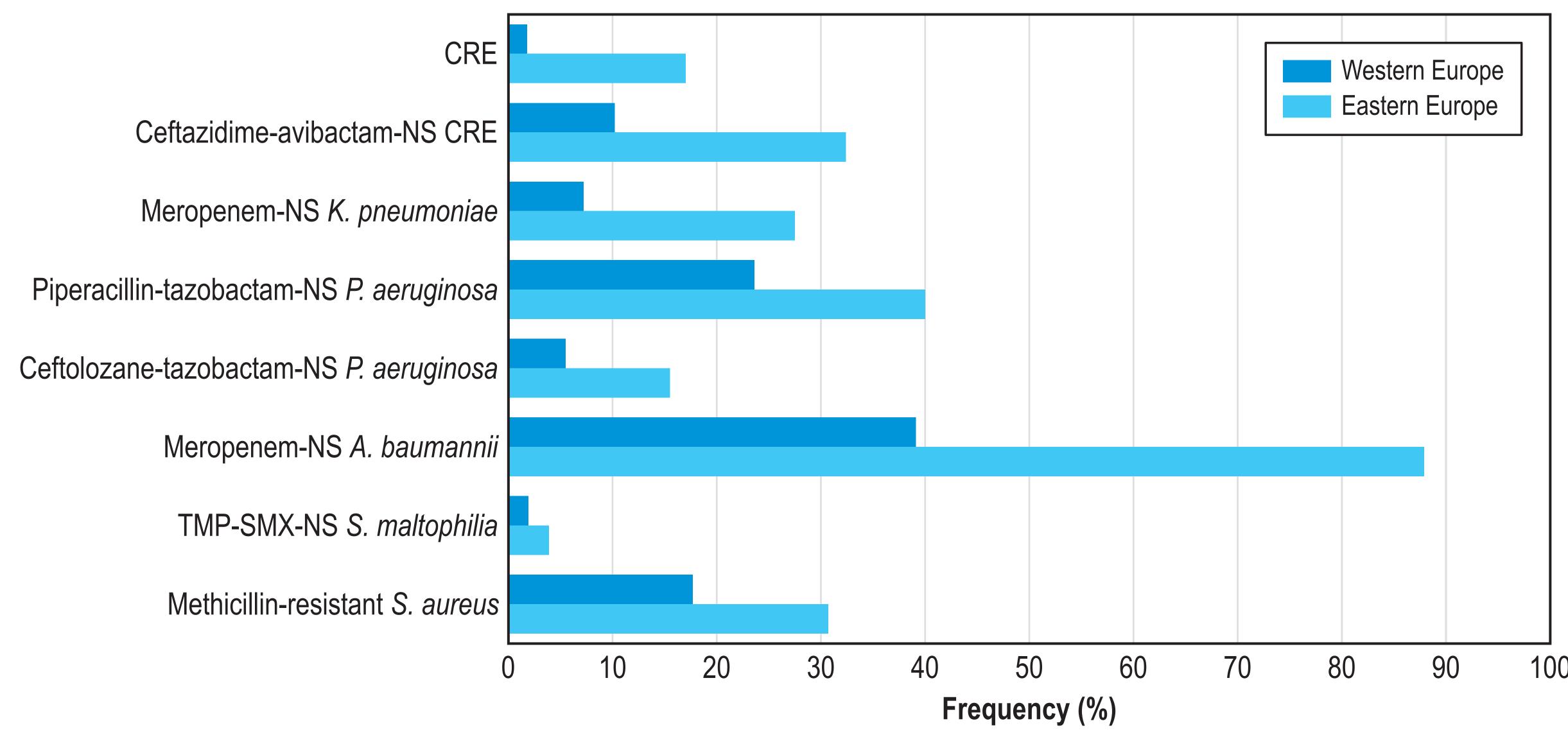

- The occurrence frequency of organisms in W-EU and E-EU is presented in Figure 1
- Gram-negative bacilli represented 75.9% and 86.3% of organisms in W-EU and E-EU, respectively.
- Non-fermentative (NF) GNB represented 26.3% and 48.6% of organisms in W-EU and E-EU, respectively (data not shown).
- The antimicrobial susceptibility of main organisms stratified by geographic region is shown in Table 1.
- Methicillin-resistant Staphylococcus aureus (MRSA) rates ranged from 30.7% in E-EU to 17.7% in W-EU, but varied over time in both regions (Table 1 and Figures 2, 3, and 4).
- Among Gram-negatives, susceptibility rates were generally lower in E-EU compared to W-EU (Table 1 and Figure 2).
- *P. aeruginosa* susceptibility to ceftazidime-avibactam and ceftolozane-tazobactam was 97.1% and 94.5% in W-EU and 87.9% and 84.5% in E-EU, respectively (Table 1 and Figure 2).
- Piperacillin-tazobactam and meropenem exhibited limited activity against P. aeruginosa from E-EU, with susceptibility rates of 60.0% and 53.3%, respectively (Table 1 and Figure 2).
- Only 12.1% of A. baumannii isolates from E-EU were meropenem-susceptible (Table 1 and Figure 2).
- The frequency of CRE, ceftazidime-avibactam-nonsusceptible CRE, and meropenem-nonsusceptible K. pneumoniae were markedly higher in E-EU compared to W-EU (Figure 2).
- Resistance rates among A. baumannii were also higher in E-EU than W-EU, while S. maltophilia susceptibility did not vary substantially between W-EU and E-EU (Table 1 and Figure 2).
- The yearly rates of some resistance phenotypes are presented in Figures 3 and 4.

#### Table 1. Antimicrobial susceptibility of main organisms isolated from patients hospitalized with pneumonia from Western Europe (W-EU) and Eastern Europe (E-EU)

#### S. aureus Oxacillin Ceftaroline Clindamycin Doxycycline Erythromycin Levofloxacin Linezolio Minocycline Figecycline TMP- SMX<sup>b</sup> Vancomycin P. aeruginosa Ceftazidime Ceftazidime-aviba Ceftolozane-tazo Piperacillin-tazob Meropenem Levofloxacin Tobramycin K. pneumoniae Ceftriaxone Ceftazidime Cefepime Ceftazidime-avib Ceftolozane-tazo Piperacillin-tazob Meropenem Levofloxacin Gentamicin Amikacin E. coli Ceftriaxone Ceftazidime Cefepime Ceftazidime-aviba Ceftolozane-tazo Piperacillin-tazob Meropenem Levofloxacin Gentamicin Amikacin E. cloacae species Ceftriaxone Ceftazidime Cefepime Ceftazidime-aviba Ceftolozane-tazo Piperacillin-tazob Meropenem Levofloxacin Gentamicin Amikacin A. baumannii Ceftazidime Cefepime Piperacillin-tazob Meropenem Levofloxacin Minocycline Gentamicin Tobramycin Amikacin Colistin S. maltophilia Ceftazidime Levofloxacin

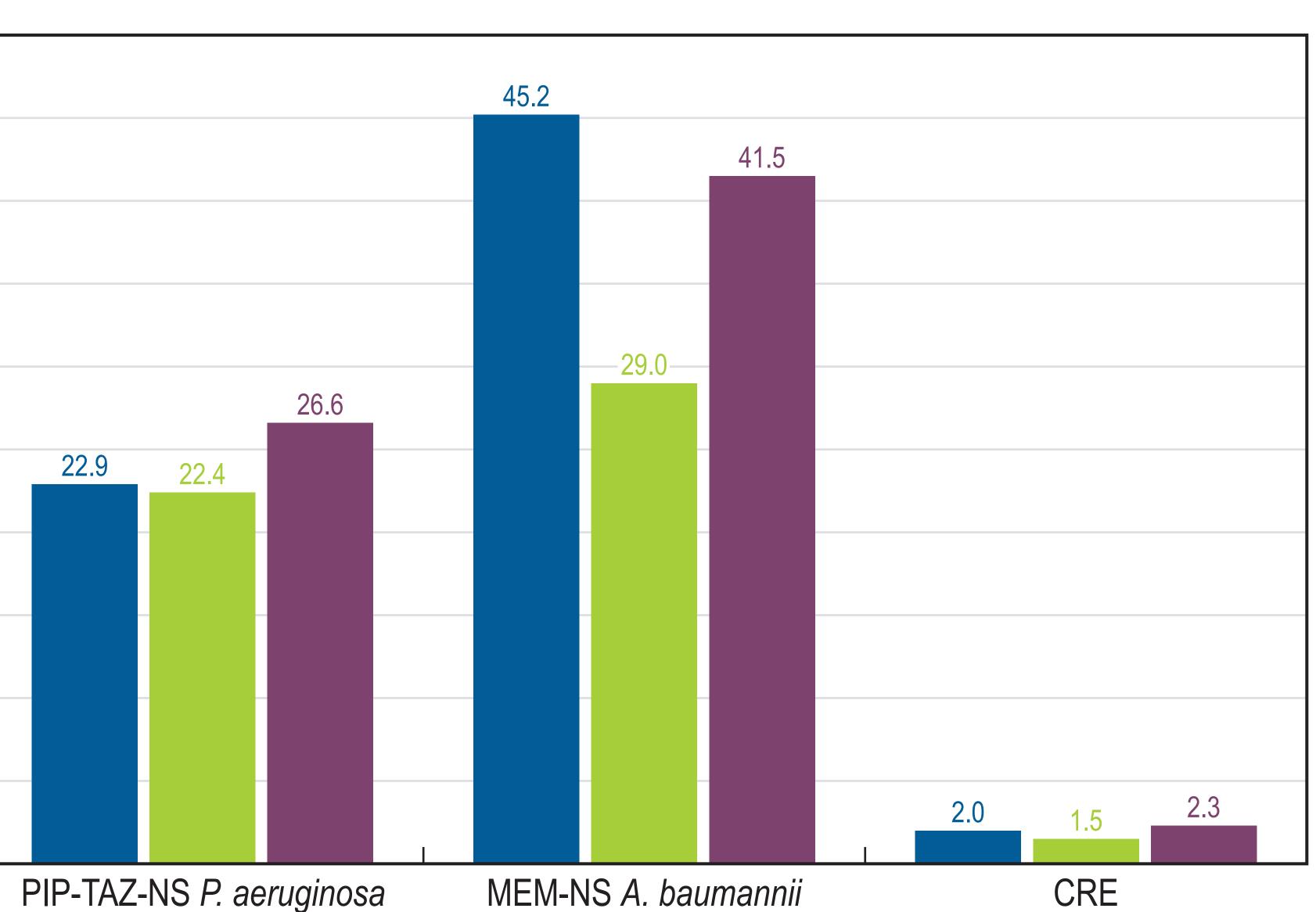

| Organism/Antimicrobial agent | % Susceptible (r<br>W-EU | no. of isolates) <sup>a</sup><br>E-EU |
|------------------------------|--------------------------|---------------------------------------|
| S. aureus                    | (1.196)                  | E-EU<br>(238)                         |
| Oxacillin                    | 82.3                     | 69.3                                  |
| Ceftaroline                  | 97.2                     | 93.7                                  |
| Clindamycin                  | 94.8                     | 89.5                                  |
| Doxycycline                  | 99.2                     | 99.2                                  |
| Erythromycin                 | 62.3                     | 61.3                                  |
| Levofloxacin                 | 83.4                     | 85.7                                  |
| Linezolid                    | 100.0                    | 100.0                                 |
| Minocycline                  | 99.5                     | 99.6                                  |
| Tigecycline                  | 100.0                    | 100.0                                 |
| TMP- SMX <sup>b</sup>        | 99.5                     | 98.7                                  |
| Vancomycin                   | 100.0                    | 100.0                                 |
| P. aeruginosa<br>Ceftazidime | (1,183)<br>79.5          | (570)<br>66.0                         |
| Ceftazidime-avibactam        | 97.1                     | 87.9                                  |
| Ceftolozane-tazobactam       | 94.5                     | 84.5                                  |
| Piperacillin-tazobactam      | 76.4                     | 60.0                                  |
| Meropenem                    | 77.8                     | 53.3                                  |
| Levofloxacin                 | 68.7                     | 46.0                                  |
| Tobramycin                   | 91.5                     | 73.2                                  |
| K. pneumoniae                | (512)                    | (409)                                 |
| Ceftriaxone                  | 72.1                     | 35.7                                  |
| Ceftazidime                  | 72.9                     | 36.9                                  |
| Cefepime                     | 73.4                     | 37.4                                  |
| Ceftazidime-avibactam        | 99.4                     | 90.4                                  |
| Ceftolozane-tazobactam       | 90.0                     | 56.4                                  |
| Piperacillin-tazobactam      | 81.4                     | 46.1                                  |
| Meropenem                    | 92.0                     | 70.6                                  |
| Levofloxacin                 | 74.6                     | 38.1                                  |
| Gentamicin                   | 84.8                     | 59.7<br>70.7                          |
| Amikacin                     | 98.0<br>(752)            | 79.7<br>(127)                         |
| E. coli<br>Ceftriaxone       | (752)<br>79.9            | (137)<br>69.3                         |
| Ceftazidime                  | 85.2                     | 76.6                                  |
| Cefepime                     | 81.4                     | 69.3                                  |
| Ceftazidime-avibactam        | 99.7                     | 100.0                                 |
| Ceftolozane-tazobactam       | 98.7                     | 98.5                                  |
| Piperacillin-tazobactam      | 87.0                     | 95.6                                  |
| Meropenem                    | 99.7                     | 99.3                                  |
| Levofloxacin                 | 72.7                     | 66.4                                  |
| Gentamicin                   | 89.6                     | 85.4                                  |
| Amikacin                     | 99.3                     | 99.3                                  |
| E. cloacae species complex   | (337)                    | (75)                                  |
| Ceftriaxone                  | 66.8                     | 54.1                                  |
| Ceftazidime                  | 61.4                     | 56.0                                  |
| Cefepime                     | 89.0                     | 77.3                                  |
| Ceftazidime-avibactam        | 99.4                     | 97.3                                  |
| Ceftolozane-tazobactam       | 77.3                     | 74.7                                  |
| Piperacillin-tazobactam      | 73.5                     | 73.3                                  |
| Meropenem                    | 99.1                     | 94.7                                  |
| Levofloxacin<br>Contamicin   | 91.6<br>05.5             | 84.0<br>82.7                          |
| Gentamicin<br>Amikacin       | 95.5<br>99.7             | 82.7<br>94.7                          |
| Amikacin<br>A. baumannii     | 99.7<br>(114)            | 94.7 (331)                            |
| Ceftazidime                  | 61.7                     | (331)<br>9.4                          |
| Cefepime                     | 56.1                     | 10.6                                  |
| Piperacillin-tazobactam      | 52.2                     | 8.5                                   |
| Meropenem                    | 60.9                     | 12.1                                  |
| Levofloxacin                 | 60.9                     | 8.5                                   |
| Minocycline                  | 72.2                     | 43.8                                  |
| Gentamicin                   | 61.7                     | 22.7                                  |
| Tobramycin                   | 68.7                     | 33.8                                  |
| Amikacin                     | 73.9                     | 19.6                                  |
| Colistin                     | 100.0                    | 77.9                                  |
| S. maltophilia               | (156)                    | (105)                                 |
| Ceftazidime                  | 13.5                     | 14.3                                  |
| Levofloxacin                 | 85.9                     | 81.9                                  |
| Minocycline                  | 100.0                    | 99.0                                  |
| TMP-SMX <sup>b</sup>         | 96.1                     | 95.1                                  |

# Europe (1.B)

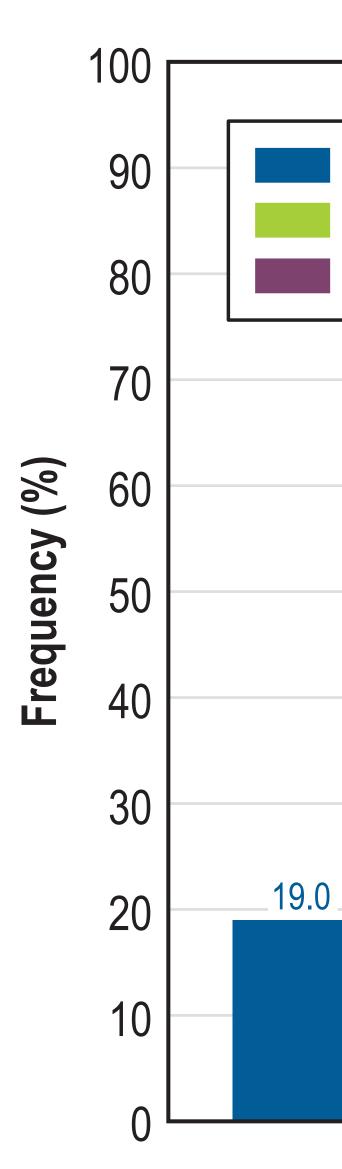



ates from Belarus. Israel, Russia, and Switzerland were excluded from this analysis because these countries did not contribute isolates every year. Abbreviations: MRSA, methicillin-resistant S. aureus; PIP-TAZ, piperacillin-tazobactam; NS, nonsusceptible; MEM, meropenem; CRE, carbapenem-resistant Enterobacterales

#### Figure 1. Frequency of occurrence of organisms isolated from patients hospitalized with pneumonia in Western Europe (1.A) and Eastern




#### Figure 2. Frequency of key resistance phenotypes among organisms isolated from patients hospitalized with pneumonia stratified by geographic region (2018–2020)




Abbreviations: CRE, carbapenem-resistant Enterobacterales; NS, nonsusceptible; TMP-SMX, trimethoprim-sulfamethoxazole

#### Figure 3. Yearly rates of selected resistance phenotypes in Western Europe



### Figure 4. Yearly rates of selected resistance phenotypes in Eastern Europe





To obtain a PDF of this poster: Scan the QR code





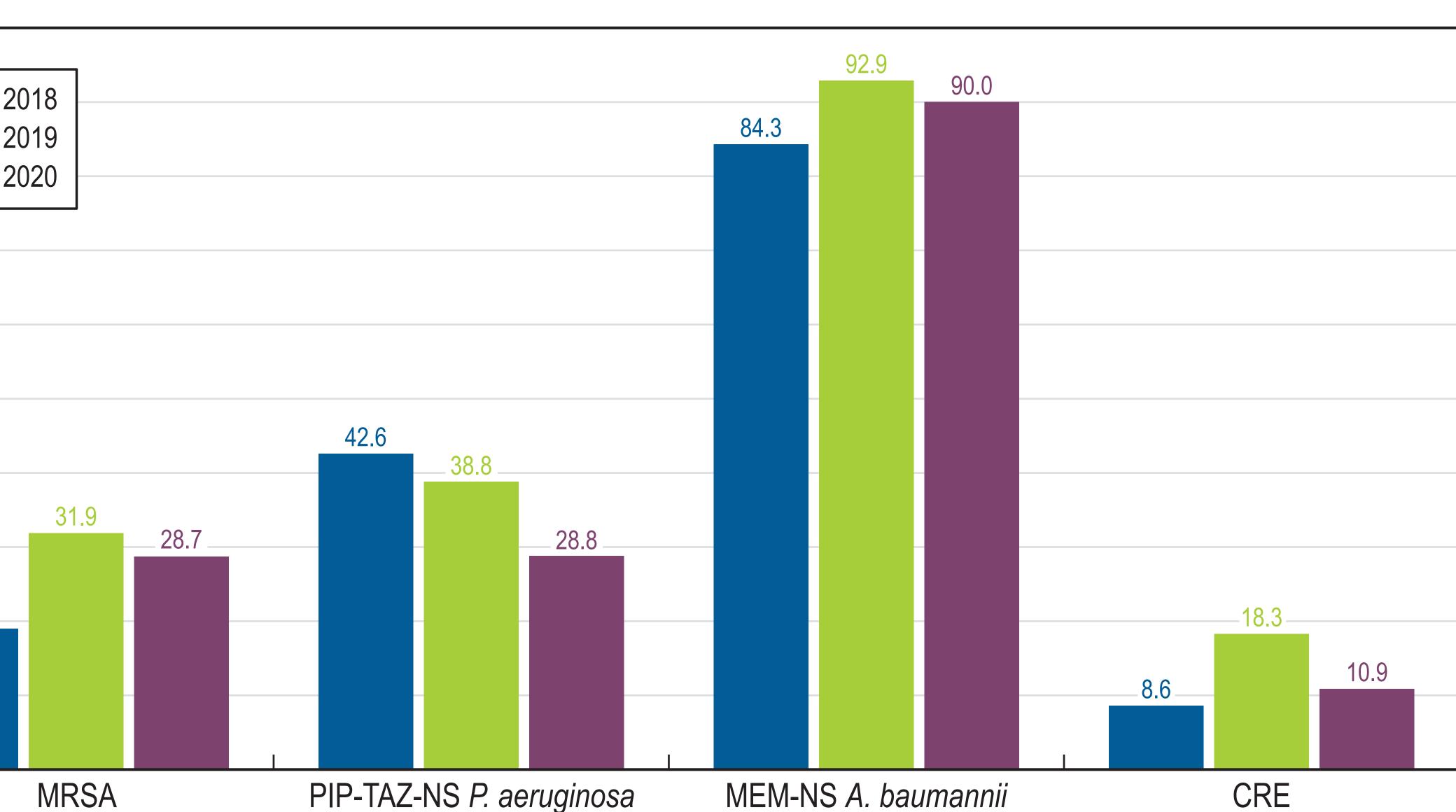
## Conclusions

- Rank order and antimicrobial susceptibility of bacteria isolated from patients hospitalized with pneumonia varied widely between W-EU and E-EU.
- Gram-negative organisms comprised most of the organisms isolated from patients with pneumonia in W-EU (75.9%) and E-EU (86.3%),
- Resistance rates were markedly higher in E-EU than W-EU among Gramnegative organisms.
- Multidrug-resistant non-fermentative GNB, such as *P. aeruginosa*, A. baumannii, and S. maltophilia, represented an important cause of pneumonia in Europe, especially in E-EU.

# Acknowledgements

The authors thank all participants of the SENTRY Antimicrobial Surveillance Program for their work in providing bacterial isolates.

# References


Clinical and Laboratory Standards Institute (2021). M100Ed31E. Performance standards for antimicrobial susceptibility testing: 31th informational supplement. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibilty tests for bacteria that grow aerobically; approved standard *– eleventh edition*. Wayne, PA: CLSI.

Sader HS, Castanheira M, Arends SJR, Goossens H, Flamm RK (2019). Geographical and temporal variation in the frequency and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bacterial pneumonia: results from 20 years of the SENTRY Antimicrobial Surveillance Program (1997–2016). J Antimicrob Chemother 74:1595-1606.

Sader HS, Castanheira M, Mendes RE, Flamm RK (2018). Frequency and antimicrobial susceptibility of Gram-negative bacteria isolated from patients with pneumonia hospitalized in ICUs of US medical centres (2015–17). J Antimicrob *Chemother* 73:3053-3059.

Sader HS, Flamm RK, Carvalhaes CG, Castanheira M (2020). Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against Gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn Microbiol Infect Dis 96:114833.



Isolates from Belarus. Israel. Russia. and Switzerland were excluded from this analysis because these countries did not contribute isolates every year. Abbreviations: MRSA, methicillin-resistant S. aureus; PIP-TAZ, piperacillin-tazobactam; NS, nonsusceptible; MEM, meropenem; CRE, carbapenem-resistant Enterobacterales