Antimicrobial Activity of Aztreonam-avibactam and Comparator Agents against Ceftazidime-avibactam-resistant Enterobacterales (2019-2021)

Helio S. Sader, Cecilia G. Carvalhaes, S. J. Ryan Arends, Rodrigo E. Mendes, Mariana Castanheira JMI Laboratories, North Liberty, Iowa, USA

Objective

To evaluate aztreonamavibactam activity against a global (ex-USA) collection of contemporary ceftazidimeavibactam-resistant (CAZ-AVI-R) Enterobacterales

Methods

- 20,750 unique isolates were consecutively collected in 2019-2021.
- Among these isolates, 285 (1.4%) were CAZ-AVI-R and were isolated from 38 medical centres in 24 countries.
- Isolates were tested by reference broth microdilution (CLSI).
- Aztreonam-avibactam was tested with avibactam at fixed 4 mg/L.
- EUCAST interpretive criteria were applied to comparators.
- CAZ-AVI-R isolates collected in 2019-2020 (n = 232) were submitted to whole genome sequencing (WGS).

Results

Table 1. Antimicrobial susceptibility of 285 CAZ-AVI-REnterobacterales collected worldwide (2019-2021)

Antimicrobial agent	MIC (mg/L)		% Susceptible	
Antimicropial agent	MIC ₅₀	MIC ₉₀	CLSI	EUCAST
Aztreonam-avibactam	0.12	0.5	[98.9]ª	
Ceftazidime-avibactam	>32	>32	0.0	0.0
Meropenem-vaborbactam	32	>32	21.1	29.5
Ceftolozane-tazobactam	>16	>16	0.0	0.0
Piperacillin-tazobactam	>128	>128	2.5	1.4
Aztreonam	>16	>16	16.1	13.0
Cefepime	>32	>32	0.4	0.4
Ceftazidime	>32	>32	0.0	0.0
Ceftriaxone	>8	>8	0.0	0.0
Ertapenem	>2	>2	6.9	6.9
Imipenem	>8	>8	2.4	2.5
Meropenem	32	>32	9.1	11.9
Levofloxacin	16	>32	12.7	12.7
Gentamicin	>16	>16	37.5	34.0
Amikacin	16	>32	62.5	46.7
Tigecycline	0.5	2		[58.2] ^b
Colistin	0.25	>8		77.1

^a Percentage inhibited at ≤8 mg/L.

^b EUCAST breakpoints for *E. coli* and *C. koseri* (≤0.5 mg/L) were applied.

- Aztreonam-avibactam inhibited 98.9% of CAZ-AVI-R isolates at ≤8 mg/L (MIC_{50/90}, 0.12/0.5 mg/L).
- Aztreonam-avibactam retained potent activity against MBL producers, independent of MBL type or geography.
- The most active comparator agents were:
 - Colistin: 77.1% S
 - Tigecycline: 58.2% inhibited at ≤0.5 mg/L
 - Amikacin: 46.7%S
 - Gentamicin: 34.0%S
 - Meropenem-vaborbactam: 29.5%S

Results

An MBL gene was identified in 214 of 232 (92.2%) isolates submitted to WGS

Table 2. Metallo-β-lactamases (MBLs) identified among ceftazidime-avibactam-resistant isolates

MBLª	No. of isolates	%		
IMP	6	2.8		
IMP-1	1	0.5		
IMP-4	1	0.5		
IMP-8	4	1.9		
NDMª	179	83.6		
NDM-1	129	60.3		
NDM-4	9	4.2		
NDM-5	26	12.1		
NDM-7	15	7.0		
VIMª	30	14.0		
VIM-1	26	12.1		
VIM-19	3	1.4		
VIM-23	1	0.5		
^a Ope isolate had an NDM 1 and a VIM 1				

^a One isolate had an NDM-1 and a VIM-1.

Aztreonam-avibactam inhibited all MBL producers at \leq 4 mg/L (MIC_{50/90}, 0.12/0.5 mg/L)

Figure 1. Aztreonam-avibactam MIC distributions by MBL type

Results

- Isolates with aztreonam-avibactam MICs >8 mg/L (n = 3) were from:
 - Poland: 1 E. coli and 1 E. cloacae
 - Thailand: 1 K. pneumoniae
- These isolates exhibited alterations on the PBP3 and/or membrane porins.

Conclusions

- MBL production was the most common mechanism of resistance to CAZ-AVI.
- Aztreonam-avibactam exhibited potent and consistent activity against CAZ-AVI-R Enterobacterales from APAC, Europe, and Latin America.
- Aztreonam-avibactam was highly active against MBL producers.

Acknowledgements

This study at JMI Laboratories was supported by Pfizer Inc. (New York, NY). JMI Laboratories received compensation fees for services in relation to preparing the poster, which was funded by Pfizer Inc.

Contact

Helio S. Sader, MD, PhD. helio-sader@jmilabs.com