In vitro activity of gepotidacin against Escherichia coli causing urinary tract infections between 2019–2021 in Europe, Russia, Israel, and Turkey, including molecularly characterized fluoroquinolone-resistant subsets

RE Mendes¹, JH Kimbrough¹, SJR Arends¹, V Kantro¹, D Torumkuney², R Kapoor³, M Castanheira¹

¹ JMI Laboratories, North Liberty, IA, USA; ² GlaxoSmithKline, London, UK; ³GlaxoSmithKline, Collegeville, PA, USA

Introduction

- Gepotidacin (GSK2140944) is a novel, bactericidal, first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action and binding site,^{1,2} and provides well-balanced inhibition of 2 different Type II topoisomerase enzymes.³
- This agent is in Phase 3 clinical trials for the treatment of gonorrhea and uncomplicated urinary tract infection (uUTI).
- Gepotidacin has shown activity against most strains of *Escherichia coli*, including isolates resistant to current clinically available antibiotics.^{4, 5} This study evaluated the activity of gepotidacin against E. coli clinical isolates causing UTI

in Europe, Russia, Israel, and Turkey. This analysis included molecular characterization for fluoroquinolone (FQ) resistance mechanisms.

Materials and Methods

Bacterial organisms

A total of 1,664 *E. coli* from the Gepotidacin Global UTI Surveillance Program (2019–2021) were included in the study. These isolates originated from 30 medical sites in 15 European countries and 5 sites in Russia and Turkey.

Table 1. Distribution of gepotidacin MICs against phenotypic and genotypic subsets of *E. coli*

Phenotype/Genotype		Number and cumulative % of isolates inhibited at gepotidacin MIC (mg/L) of:									MIC (mg/L)		
		≤0.12	0.25	0.5	1	2	4	8	16	32	50%	90%	
FQ-susceptible (1,249)			3 (0.2)	32 (2.8)	392 (34.2)	654 (86.5)	153 (98.8)	13 (99.8)	2 (100.0)		2	4	
FQ-not susceptible (415)		3 (0.7)	11 (3.4)	36 (12.0)	136 (44.8)	147 (80.2)	52 (92.8)	17 (96.9)	11 (99.5)	2 (100.0)	2	4	
QRDR GyrA	ParC	ParE											
Single ^a	WT	WT			2 (7.1)	9 (39.3)	7 (64.3)	7 (89.3)	3 (100.0)			2	8
Single ^a	Single ^b	WT			5 (41.7)	5 (83.3)	0 (83.3)	2 (100.0)				1	4
Double	Single ^c	WT	2 (1.6)	6 (6.5)	7 (12.1)	43 (46.8)	48 (85.5)	13 (96.0)	3 (98.4)	2 (100.0)		2	4
Doubled	Singled	Singled		1 (1.6)	14 (24.6)	34 (80.3)	9 (95.1)	3 (100.0)				1	2
Double ^e	Double ^e	WT	1 (0.6)	3 (2.5)	8 (7.4)	44 (34.6)	79 (83.3)	26 (99.4)	0 (99.4)	1 (100.0)		2	4
Plasmid-me	ediated res	istance											
<i>qnr</i> (47) ^f				1 (2.1)	0 (2.1)	1 (4.3)	4 (12.8)	11 (36.2)	17 (72.3)	11 (95.7)	2 (100.0)	8	16
aac(6')-1b-cr (73)				5 (6.8)	24 (39.7)	29 (79.5)	15 (100.0)				2	4	

FQ, fluoroquinolone; QRDR, quinolone resistance determining region; WT, wildtype; GyrA, DNA gyrase subunit A; GyrB, DNA gyrase subunit B; ParC, DNA topoisomerase IV subunit A; ParE, DNA topoisomerase IV subunit B. Mutations in GyrB were not detected

Only isolates responsible for UTI according to local clinical criteria were included; bacterial identification was confirmed by standard algorithms supported by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).

Susceptibility testing

- Isolates were tested for susceptibility by broth microdilution and agar dilution following Clinical and Laboratory Standards Institute (CLSI) M07 (2018) guidelines.⁶
- Frozen-form broth microdilution panels were manufactured by JMI Laboratories (North Liberty, Iowa) and contained cation-adjusted Mueller-Hinton broth. Agar dilution plates were used for testing fosfomycin (included glucose-6-phosphate at 25 µg/mL) and mecillinam.^{6, 7}
- Quality assurance was performed by sterility checks, colony counts, and testing CLSI-recommended quality control reference strains.⁷ Interpretation of MIC results was performed using EUCAST criteria, except for amoxicillin-clavulanate MIC values that were interpreted using CLSI breakpoints.^{7,8}
- *E. coli* with MIC results ≥ 0.5 mg/L for ciprofloxacin and/or ≥ 1 mg/L for levofloxacin (not susceptible [NS] to either agent based on CLSI/EUCAST criteria) were selected for screening of fluoroquinolone resistance mechanisms. Isolates were subjected to genome sequencing, followed by screening of plasmid-mediated fluoroquinolone resistance genes and mutations in the quinolone resistance-determining regions (QRDR) of GyrA, GyrB, ParC, and ParE.

Screening of resistance determinants

- Selected isolates had total genomic DNA extracted by the fully automated Thermo Scientific[™] KingFisher[™] Flex Magnetic Particle Processor (Cleveland, OH, USA), which was used to generate input material for library construction.
- DNA libraries were prepared using the Nextera[™] library or Illumina DNA Prep construction protocol (Illumina, San Diego, CA, USA) following the manufacturer's instructions and were sequenced on MiSeq or NextSeq Sequencer platforms at JMI Laboratories.
- FASTQ format sequencing files for each sample set were assembled independently using the *de novo* assembler SPAdes 3.11.0. An in-house software was applied to align the assembled sequences against a comprehensive in-house database containing known plasmid-encoded fluoroquinolone resistance genes and reference GyrA, GyrB, ParC, and ParE sequences from a susceptible control strain.⁹

^a S83L in GyrA. ^b S80I, S80R, or E84G. S83L/D87G or S83L/D87H or S83L/D87N or S83L/D87Y in GyrA and S80I or S80R or S80W or E84K in ParC ^d S83L/D87N in GyrA, S80I in ParC, and L416F in ParE. ^e S83L/D87N or S83L/D87Y in GyrA and S80I/E84A, S80I/E84G, S80I/E84V, or S80I/A90V in ParC. ¹ Represents the following genes: qnrB (8), qnrS (37), qnrVC4 (1), and qnrB38/aac(6')-Ib-cr (1) with or without mutations in QRDR

Table 2. Activity of gepotidacin and comparator agents against various subsets of *E. coli*

5 1 1 1 1 1 1 1 1 1 1		MIC (mg/L)		EUCAST ^a			
Antimicrobial agent	MIC ₅₀		MIC range	%S	<u> </u>	%R	
Fluoroquinolone-susceptible (1,249)		in egg	inte runge	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	701		
Gepotidacin	2	4	0.25 to 16				
Amoxicillin-clavulanate	4	16	0.5 to >32	84.7 ^b	10.3	5.0	
Ampicillin	4	>64	≤1 to >64	58.1 ^b		41.9	
Cefazolin	2	16	≤0.5 to >32		83.1 ^{c, d}	16.9	
Ciprofloxacin	0.015	0.12	≤0.002 to 0.25	100.0	0.0	0.0	
Levofloxacin	0.03	0.25	≤0.015 to 0.5	100.0	0.0	0.0	
Nitrofurantoin	16	16	≤2 to >128	99.7 ^b		0.3	
Trimethoprim-sulfamethoxazole	≤0.12	>4	≤0.12 to >4	79.7	0.8	19.5	
Trimethoprim	0.5	>8	0.03 to >8	77.8 ^b		22.2	
Fosfomycin	0.5	1	≤0.12 to >256	98.4 ^b		1.6	
Mecillinam	0.5	4	0.03 to >32	93.9 ^b		6.1	
Fluoroquinolone-not susceptible (415)							
Gepotidacin	2	4	0.06 to 32				
Amoxicillin-clavulanate	8	32	2 to >32	62.2 ^b	27.5	10.4	
Ampicillin	>64	>64	2 to >64	13.0 ^b		87.0	
Cefazolin	16	>32	1 to >32		39.8 ^{c,d}	60.2	
Ciprofloxacin	>4	>4	0.25 to >4	0.2	12.1	87.7	
Levofloxacin	8	32	0.25 to >32	8.0	6.5	85.5	
Nitrofurantoin	16	32	≤2 to >128	97.1 ^b	0.0	2.9	
Trimethoprim-sulfamethoxazole	>4	>4	≤0.12 to >4	44.4	1.2	54.3	
Trimethoprim	>8	>8	0.03 to >8	42.5 ^b	1.2	57.5	
Fosfomycin	0.5	2	0.25 to >256	94.0 ^b		6.0	
Mecillinam	1	8	0.06 to >32	93.5 ^b		6.5	
gnr genes (47)	1	0	0.00 10 - 02	00.0		0.0	
Gepotidacin	8	16	0.25 to 32				
Amoxicillin-clavulanate	8	>32	2 to >32	68.1 ^b	12.8	19.1	
Ampicillin	>64	>64	2 to >64	2.1 ^b	12.0	97.9	
Cefazolin	>32	>32	1 to >32	۲.۱	34.0 ^{c,d}	66.0	
Ciprofloxacin	1	>4	0.5 to >4	0.0	42.6	57.4	
Levofloxacin	1	>32	0.5 to >32	23.4	29.8	46.8	
Nitrofurantoin	16	32	≤2 to 32	100.0 ^b	23.0	0.0	
Trimethoprim-sulfamethoxazole	>4	>4	≤0.12 to >4	40.4	0.0	59.6	
Trimethoprim	>8	>8	0.06 to >8	0 39.1⁵	0.0	60.9	
Fosfomycin	0.5	-0	0.25 to >256	93.6 ^b		6.4	
Mecillinam	1	8	0.25 to >32	93.0 91.5 ^b		8.5	
aac(6')- <i>lb-cr</i> genes (73)	1	0	0.20 10 202	31.5		0.0	
Gepotidacin	2	4	0.5 to 4				
Amoxicillin-clavulanate	16	32	8 to >32	8.2 ^b	71.2	20.5	
Ampicillin	>64	>64	>64 to >64	0.0 ^b	11.2	100.0	
Cefazolin	>32	>32	2 to >32	0.0	11.0 ^{c,d}	89.0	
Ciprofloxacin	>4	>4	2 to >32 >4 to >4	0.0	0.0	100.0	
Levofloxacin	16	32	4 to 32	0.0	0.0	100.0	
Nitrofurantoin	16	32	4 to 32 ≤2 to >128	0.0 95.9 ^b	0.0	4.1	
		32 >4	≤2 t0 >128 ≤0.12 to >4	95.9° 36.1	0.0		
Trimethoprim-sulfamethoxazole	>4				0.0	63.9 63.0	
Trimethoprim	>8	>8	0.12 to >8	37.0 ^b		63.0 ° 2	
Fosfomycin	0.5	8	0.25 to >256	91.8 ^b		8.2	
Mecillinam	0.5	2	0.12 to >32	98.6 ^b		1.4	

- Gepotidacin demonstrated potent activity against both FQ-S and FQ-NS *E. coli* causing UTIs in Europe, Russia, Israel and Turkey. In addition, the gepotidacin MIC results were not affected by QRDR mutations and most of plasmid-mediated FQ-R genes.
- Subsets of isolates with *qnr* genes were associated with higher MIC values for gepotidacin, as well as for other tested antibiotics, including amoxicillin-clavulanate, cefazolin and levofloxacin.
- These data support the development of gepotidacin for the treatment of UTI caused by both FQ-S and FQ-NS *E. coli* isolates.

Results

- A total of 24.9% (415/1,664) *E. coli* met the MIC criteria for screening of FQ-resistance (R) mechanisms (Table 1), and the occurrence of this phenotype was higher among isolates from Eastern European countries (35.1%) than that observed among *E. coli* originating from Western European countries (17.5% of all isolates).
- Most FQ-NS isolates (39.0%; 162/415) had double mutations at GyrA and ParC, followed by isolates (29.9%; 124/415) with double mutations at GyrA and single mutations at ParC (Table 1).
- Among FQ-NS isolates, plasmid-mediated FQ-R genes, such as qnr variants, were detected in 11.3% (47/415) of these isolates, whereas aac-(6')-lb-cr variants were noted in 17.8% (74/415) of isolates, including 1 strain with both genes (Table 1).
- Gepotidacin had an MIC₅₀ of 2 mg/L and an MIC₉₀ of 4 mg/L against both FQ-S and FQ-NS isolates (Tables 1 and 2).
- Nitrofurantoin had activity against the FQ-S and FQ-NS subsets (99.7% and 97.1%S,

^a Criteria as published by EUCAST (2022) as available, except for amoxicillin-clavulanate that used CLSI (2012)

^b Breakpoints for uUTI treatment via oral administration

^c Breakpoints for UTI.

^d Intermediate isolates can be considered as susceptible if an increased drug concentration can be achieved in the site of infection or by increasing the dosing regimen.

References

- . Gibson EG, Bax B, Chan PF, Osheroff N. Mechanistic and Structural Basis for the Actions of the Antibacterial Gepotidacin against Staphylococcus aureus Gyrase. ACS Infect Dis 2019;5(4):570-581.
- 2. Bax BD, Chan PF, Eggleston DS, Fosberry A, Dentry DR, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010;466(7309):935–940.
- 3. Oviatt A, et al. Poster #L0178 presented at ECCMID, 23–26 Apr, 2022, Lisbon, Portugal.
- 4. Biedenbach DJ, Bouchillon SK, Hackel M, Miller LA, Scangerella-Oman NE, et al. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 2016;60(3):1918–1923.
- 5. Mushtaq S, et al. Poster #P1849 presented at ECCMID, 13–16 April, 2019, Amsterdam, The Netherlands.
- 6. Clinical and Laboratory Standards Institute (2018). M07Ed11. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, PA, USA.

respectively), whereas amoxicillin-clavulanate (84.7% and 62.2% susceptible) and trimethoprimsulfamethoxazole (79.7% and 44.4% susceptible) had limited activity (Table 2).

- Fosfomycin (91.8–98.4% susceptible) and mecillinam (91.5–98.6% susceptible) were also active (i.e., >90% susceptible) against the various *E. coli* subsets presented here (Table 2).
- Gepotidacin had an MIC₅₀ of 1 mg/L or 2 mg/L and an MIC₉₀ of 2 mg/L, 4 mg/L, or 8 mg/L against isolates with various QRDR mutations (Table 1).
- Against isolates carrying plasmid-mediated FQ-R genes, gepotidacin had MIC₅₀ and MIC₉₀ values of 2 mg/L and 4 mg/L against those isolates with *aac*-(6')-*lb-cr*, whereas MIC₅₀ and MIC₉₀ values of 8 mg/L and 16 mg/L against the *qnr* subset (Table 1).

Acknowledgements

This study at JMI Laboratories was supported by GlaxoSmithKline. JMI Laboratories received compensation fees for services in relation to preparing the poster. This project has been funded in whole or in part with Federal funds from the Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under OTA Agreement No. HHSO100201300011C.

. Clinical and Laboratory Standards Institute (2021). M100Ed31. Performance standards for antimicrobial susceptibility testing. Wayne, PA, USA.

8. European Committee on Antimicrobial Susceptibility Testing (2022). Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, January 2022.

9. Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: Analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6(Suppl 1):S69–S78.

Contact

Rodrigo E. Mendes, Ph.D. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: rodrigo-mendes@jmilabs.com

Presentation number #P0100 33rd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) 15–18 April, 2023 | Denmark, Copenhagen

Please find the online version of this poster and accompanying audio by scanning the QR code or via https://www.jmilabs.com /data/posters/ECCMID2023 ECcausingUTI.pdf

