ESCMID 2025 | Poster #P1351

Activity of cefiderocol against carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex, including molecularly characterized clinical isolates, causing infections in hospitals in European and adjacent regions (2020-2023)

RE Mendes, JH Kimbrough, JM Maher, HS Sader, M Castanheira Element Iowa City (JMI Laboratories), North Liberty, IA, USA

Introduction

- Cefiderocol is approved in Europe for the treatment of infections in adult patients due to aerobic Gram-negative organisms, where limited treatment options are available.
 - Cefiderocol is also approved by the US Food and Drug Administration (FDA) for the treatment of complicated urinary tract infections, including pyelonephritis, as well as hospitalacquired bacterial pneumonia and ventilator-associated bacterial pneumonia.

Results

- A total of 62.3% (1288/2067) A. baumannii-calcoaceticus species complex isolates were classified as carbapenem-resistant (Table 1).
 - Most carbapenem-resistant isolates originated from pneumonia _ patients (50%), whereas smaller percentages originated from bloodstream infections (23%), skin and skin structure infections (9%), and urinary tract infections (4%) (Figure 1).

Conclusions

- Cefiderocol had the highest *in vitro* activity against all and each resistant subset of A. baumannii-calcoaceticus species complex causing infections in hospitals in European countries, Israel, and Turkey.
- These in vitro data suggest that cefiderocol is an important option for the treatment of infections caused by these resistant pathogens, as

- Cefiderocol is a siderophore cephalosporin with broad activity against Gram-negative bacteria, including multidrug-resistant (MDR) organisms like carbapenem-resistant Acinetobacter baumannii.
- The activity of this molecule is due to its ability to achieve high periplasmic concentrations by hijacking the bacterial iron transport machinery, which increases cell entry.
 - In addition, cefiderocol remains stable to hydrolysis by serine β -lactamases (ESBLs, KPCs, and OXA-type carbapenemases) and metallo- β -lactamases.
- This study evaluated the activity of cefiderocol and comparator agents against A. baumannii-calcoaceticus complex collected from hospitals in European countries, Israel, and Turkey during 2020–2023.

Materials and Methods

Bacterial organisms

- This study comprised a collection of 2,067 A. baumanniicalcoaceticus complex collected from various clinical specimens in patients hospitalized in 42 medical centers in 17 European countries, Israel, and Turkey during 2020–2023.
- Only consecutive isolates (1 per patient infection episode) responsible for documented infections according to local institutional criteria were included.
- Bacterial identification was confirmed by standard algorithms supported by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany).

Susceptibility testing

• Isolates were tested for susceptibility by broth microdilution following the Clinical and Laboratory Standards Institute (CLSI) M07 (2024) guidelines.

- A carbapenem resistance phenotype amongst A. baumanniicalcoaceticus species complex was observed in 78.2% and 36.0% of isolates originating from Eastern (including Israel and Turkey) and Western European countries, respectively (Table 1).
 - Isolates originating from most Eastern European regions showed high carbapenem resistance ($\geq 69\%$), except for Czech Republic (35%) and Slovenia (22%).
 - Most countries in Western Europe had carbapenem resistance at _ <15%, except for Italy (77%), Portugal (44%), and Spain (42%).
- Among carbapenem-resistant A. baumannii-calcoaceticus species complex, all but 9 (99.3%; 1279/1288) carried carbapenemase genes (Table 2).
 - *bla*_{0xA-23}-like (73.5%; 940/1279) was among the most common carbapenemase gene detected, followed by bla_{OXA-24} -like (16.3%; 209/1279) (Table 2).
 - A smaller subset (9.8%; 125/1279) carried bla_{NDM-1} , dual _ carbapenemases or bla_{OXA} carbapenemases in combination with Class A extended-spectrum β -lactamases (bla_{GES-22} or bla_{PER-1} or bla_{PER-7}).
- In general, cefiderocol (MIC_{50/90}, 0.25/1 mg/L; 92.7–97.0% susceptible) had the lowest MIC_{50/90} against all A. baumanniicalcoaceticus species complex (Table 2).
 - Comparators had limited activity (34.6–37.7% susceptible), except for colistin (87.9% susceptible).
- Cefiderocol (89.4–95.4% susceptible) had $MIC_{50/90}$ values of 0.25/2 mg/L against the carbapenem-resistant and carbapenemasepositive subsets, whereas comparator agents shown in Table 2 were not active (0.0–1.2% susceptible), except for colistin, which was active against 81.1% of these isolates (Table 2).
- Cefiderocol (89.0–98.3% susceptible) showed $MIC_{50/90}$ of 0.25/1-2 mg/L against isolates carrying *bla*_{OXA-23}-like and *bla*_{OXA-24}-like
 - All isolates carrying bla_{0XA-58} -like were inhibited by cefiderocol _ at MIC of ≤0.25 mg/L, as well as those with no acquired carbapenemases and carrying only the intrinsic *bla*_{OXA-51}-like and *bla*_{OXA-213}-like genes (n=9), except for 1 *A*. *baumannii-calcoaceticus* species complex isolate with a cefiderocol MIC of 2 mg/L.
- Cefiderocol (62.4–68.8% susceptible) had MIC_{50/90} of

comparator and recommended agents are not active.

Acknowledgments

This research and poster presentation were sponsored by Shionogi & Co., LTD.

References

1. Clinical and Laboratory Standards Institute. 2024. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M07 12th Edition. Wayne, PA, USA.

2. Clinical and Laboratory Standards Institute. 2024. Performance standards for antimicrobial susceptibility testing. *M100 34th Edition*. Wayne, PA, USA.

3. FDA Susceptibility Test Interpretive Criteria: https://www.fda.gov /drugs/development-resources/antibacterial-susceptibility-test -interpretive-criteria. Accessed April, 2024.

4. Karlowsky JA, Hackel MA, Takemura M, Yamano Y, Echols R, Sahm DF. 2022. In vitro susceptibility of Gram-negative pathogens to cefiderocol in five consecutive annual multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob Agents Chemother. 66: e0199021.

5. Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: Analysis of the distribution of β -lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6: S69-S78.

- Frozen-form broth microdilution panels were manufactured by Element Iowa City (JMI Laboratories; North Liberty, IA, USA) and contained cation-adjusted Mueller-Hinton broth (CAMHB) for comparator agents.
- Susceptibility testing for cefiderocol used broth microdilution panels containing iron-depleted CAMHB per CLSI guidelines.
- Quality assurance was performed by sterility checks, bacterial inoculum (colony counts), and testing CLSI-recommended quality control reference strains.
- MIC results for cefiderocol and comparator agents were interpreted according to the FDA/EUCAST (PK/PD)/CLSI criteria.
- Isolates with imipenem and/or meropenem MIC $\geq 8 \text{ mg/L}$ (resistant based on CLSI criteria) were subjected to genome sequencing and screening of β -lactamase genes.

Table 1. Distribution of carbapenem-resistant A. baumannii-calcoaceticus complex in European countries, Israel, and Turkey

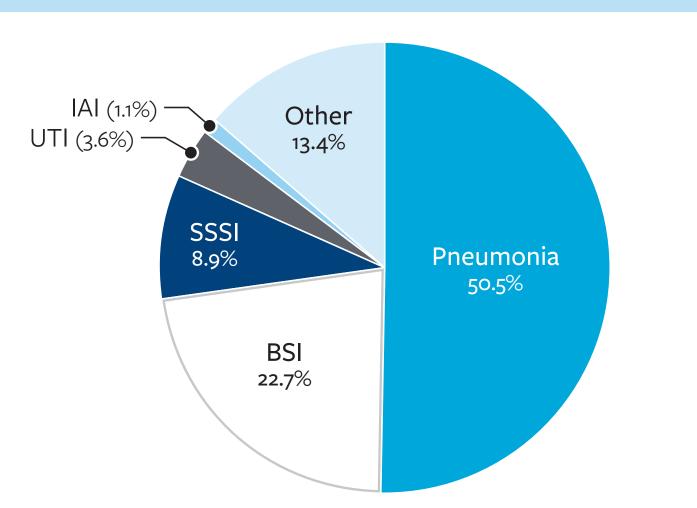
Region	Number of carbapenem-resistant				
Country (Number included)	(%)				
Eastern (1291)	1009 (78.2)				
Czech Republic (23)	8 (34.8)				
Greece (161)	158 (98.1)				
Hungary (61)	44 (72.1)				
Israel (441)	304 (69.0)				
Poland (135)	125 (92.6)				
Romania (70)	63 (90.0)				
Slovakia (11)	8 (72.7)				
Slovenia (54)	12 (22.2)				
Turkey (335)	287 (85.7)				
Western (776)	279 (36.0)				
Belgium (25)	2 (8.0)				
France (75)	5 (6.7)				
Germany (202)	20 (9.9)				
Ireland (13)	1 (7.7)				
Italy (269)	206 (76.6)				
Portugal (27)	12 (44.4)				
Spain (53)	22 (41.5)				
Sweden (17)	2 (11.8)				
Switzerland (64)	9 (14.1)				
UK (31)	0 (0.0)				
Total (2067)	1288 (62.3)				

0.5/64 mg/L against a small subset of isolates carrying bla_{NDM-1}, dual carbapenemases or *bla*_{OXA} carbapenemases in combination with bla_{GES-22} or bla_{PER-1} or bla_{PER-7} .

6. Ong'uti S, Czech M, Robilotti E, Holubar M. 2022. Cefiderocol: A new cephalosporin stratagem against multidrug resistant Gram-negative bacteria. Clin Infect Dis. 74: 1303-1312.

Contact

Rodrigo E. Mendes, Ph.D. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: rodrigo.mendes@element.com


To obtain a PDF of this poster:

Scan the QR code or visit https://www .jmilabs.com/data/posters/ESCMID 2025_24-SHI-06_P3_ACB.pdf

Charges may apply. No personal information is stored.

Table 2. Activity of cefiderocol, β -lactam- β -lactamase inhibitor combinations and other comparator agents against A. baumannii-calcoaceticus complex and carbapenem-resistant subsets

Figure 1. Distribution of infection types^a **caused by** carbapenem-resistant A. baumannii-calcoaceticus complex in European countries, Israel, and Turkey

^a BSI, bloodstream infections; IAI, intra-abdominal infections; SSSI, skin and skin-structure infections; UTI, urinary tract infections.

Phenotype ^a /genotype (No.)	MIC ₅₀ /MIC ₉₀ in mg/L (% susceptible by FDA/EUCAST/CLSI criteria) ^b						
	FDC	IMR	MER	A/S	CAZ	COL	
All (2,067)	0.25/1 (92.7/95.5/97.0)	>8/>8 (37.7)	>32/>32 (37.5)	32/>64 (36.3)	>32/>32 (34.6)	0.5/8 (87.9)	
Carbapenem-susceptible (774)	0.06/0.25 (98.4/99.4/99.6)	0.25/0.25 (100)	0.25/1 (100)	2/8 (94.3)	4/8 (91.2)	0.25/1 (99.0)	
Carbapenem-resistant (1288)	0.25/2 (89.4/93.2/95.4)	>8/>8 (0.2)	>32/>32 (0.0)	64/>64 (1.3)	>32/>32 (0.7)	0.5/>8 (81.1)	
Carbapenemase-positive (1,279)	0.25/2 (89.4/93.1/95.4)	>8/>8 (0.1)	>32/>32 (0.0)	64/>64 (1.2)	>32/>32 (0.7)	0.5/>8 (81.1)	
OXA-23-like (940)	0.25/1 (93.0/96.4/98.3)	>8/>8 (0.0)	>32/>32 (0.0)	64/>64 (0.4)	>32/>32 (0.6)	0.5/>8 (77.8)	
OXA-24-like (209)	0.25/2 (89.0/95.2/98.1)	>8/>8 (0.0)	>32/>32 (0.0)	64/>64 (4.3)	>32/>32 (1.4)	0.5/8 (87.1)	
OXA-58-like (5)	0.12/- (100/100/100)	16/- (2.4)	16/- (0.0)	64/- (0.0)	>32/- (0.0)	0.25/- (100)	
Other ^c (125)	0.5/64 (62.4/64.8/68.8)	>8/>8 (0.8)	>32/>32 (0.0)	>64/>64 (0.0)	>32/>32 (0.0)	0.5/1 (95.2)	
Carbapenemase-negative ^d (9)	0.25/- (88.9/100/100)	>8/- (11.1)	>32/- (0.0)	16/- (22.2)	>32/- (0.0)	0.25/- (77.8)	

Abbreviations: FDC, cefiderocol; IMR, imipenem-relebactam; MER, meropenem; A/S, ampicillin-sulbactam; CAZ, ceftazidime; COL, colistin.

^a Carbapenem-susceptible, isolates susceptible to imipenem and meropenem based on EUCAST/CLSI criteria (MIC values <2 mg/L); carbapenem-resistant, isolates resistant to imipenem and/or meropenem based on CLSI criteria (MIC values $\geq 8 \text{ mg/L}$).

^b Cefiderocol MIC results were interpreted according to the FDA/EUCAST (PK/PD)/CLSI criteria, whereas comparator agent MIC were interpreted based on EUCAST criteria, except for imipenem-relebactam that used FDA, and ampicillin-sulbactam and ceftazidime that used CLSI criteria.

^c Includes bla_{NDM-1} (4), $bla_{NDM-1} + bla_{OXA-23}$ (21), $bla_{OXA-23} + bla_{OXA-72}$ (54), $bla_{OXA-23} + bla_{OXA-23} + bla_{OXA-23} + bla_{OXA-23} + bla_{PER-7}$ (6), $bla_{OXA-23} + bla_{PER-7}$ (8), $bla_{OXA-72} + bla_{PER-7}$ (1), $bla_{OXA-72} + bla_{PER-7}$ (2). ^d Includes A. pittii (5) and A. baumannii (4), where bla_{OXA-213}- and bla_{OXA-51}-variants are intrinsic, respectively. Acquired carbapenemases were not detected in these isolates.