E-2065

Macrolide-Induction, Inoculum Effect and Kill-Curve Analysis of Telithromycin Tested Against S. pneumoniae Strains with Characterized MLSB Resistances

The JONES Group/JMI Laboratories North Liberty, IA, USA www.jmilabs.com

ICAAC 2004

319.665.3370. fax 319.665.3371 ronald-jones@jmilabs.com

DJ BIEDENBACH, PR RHOMBERG, GJ MOET, RN JONES The JONES Group/JMI Laboratories, North Liberty, Iowa

AMENDED ABSTRACT

Background: Telithromycin (TEL) is a semisynthetic derivative of the macrolide class that has activity advantage over MLS_B agents against S. pneumoniae (SPN). This study evaluates erythromycin (ERY) induction of resistance (R, \geq 4 μ g/ml) to TEL, inoculum concentration (conc) effects elevating TEL MICs and kill-curve kinetics of TEL against SPN isolates with known MLS_B-R mechanisms

Methods: 51 SPN isolates with MLS_B-R were tested including: 10 strains each with M or MLS(B) phenotypes; 10 strains with confirmed erm(B) or mef(A); 5 strains with erm(B) and mef(A); and 6 strains with target-site modification in the 23S rRNA and/or L22 riboprotein mutations. MLS_R and TEL MICs were determined using NCCLS broth microdilution methods. Characterized R mechanisms were detected using multiplex rapid cycle PCR methods. Induction experiments used 0.12 µg/ml of ERY + TEL, inoculum concs included 103, 105 and 107 CFU/ml and kill-curve analysis was performed using fixed 1, 2 and 4 μg/ml TEL concentrations (10 strains): TEL-S breakpoint [BP] was at \leq 1 µg/ml.

Results: Baseline TEL MICs ranged from ≤ 0.06 - 2 μ g/ml and 20 strains increased MIC \geq 2-fold (14), \geq 4-fold (5) and \geq 8-fold (1) in the presence of ERY distributed among all MLS_R-R groups (8 strains reached BP). The inoculum concentration influenced the TEL MICs with 23 strains having lower MICs (usually 2-fold) at 10³ versus 10⁵ and higher (23 strains; 2 to 16-fold) at 10⁷ (4 strains moved into the R category). Most $erm(B) \pm mef(A)$ strains tested by kill-curve had stable bacterial counts at T_0 - T_8 and regrowth (T₈-T₂₄) at all concentrations. The *mef*(A) strains had significant reduction in growth at 2 and 4 μg/ml and generally poor activity was noted at 1 µg/ml. All concentrations showed significant kill against strains negative for erm(B) or mef(A) mediated

Conclusions: SPN strains with MLS_R-R mechanisms can have TEL MICs influenced by inoculum concentration and ERY induction. Kill curve analysis showed significant decreases in bacterial counts (T_{24}) only with TEL 2 and 4 µg/ml concentrations.

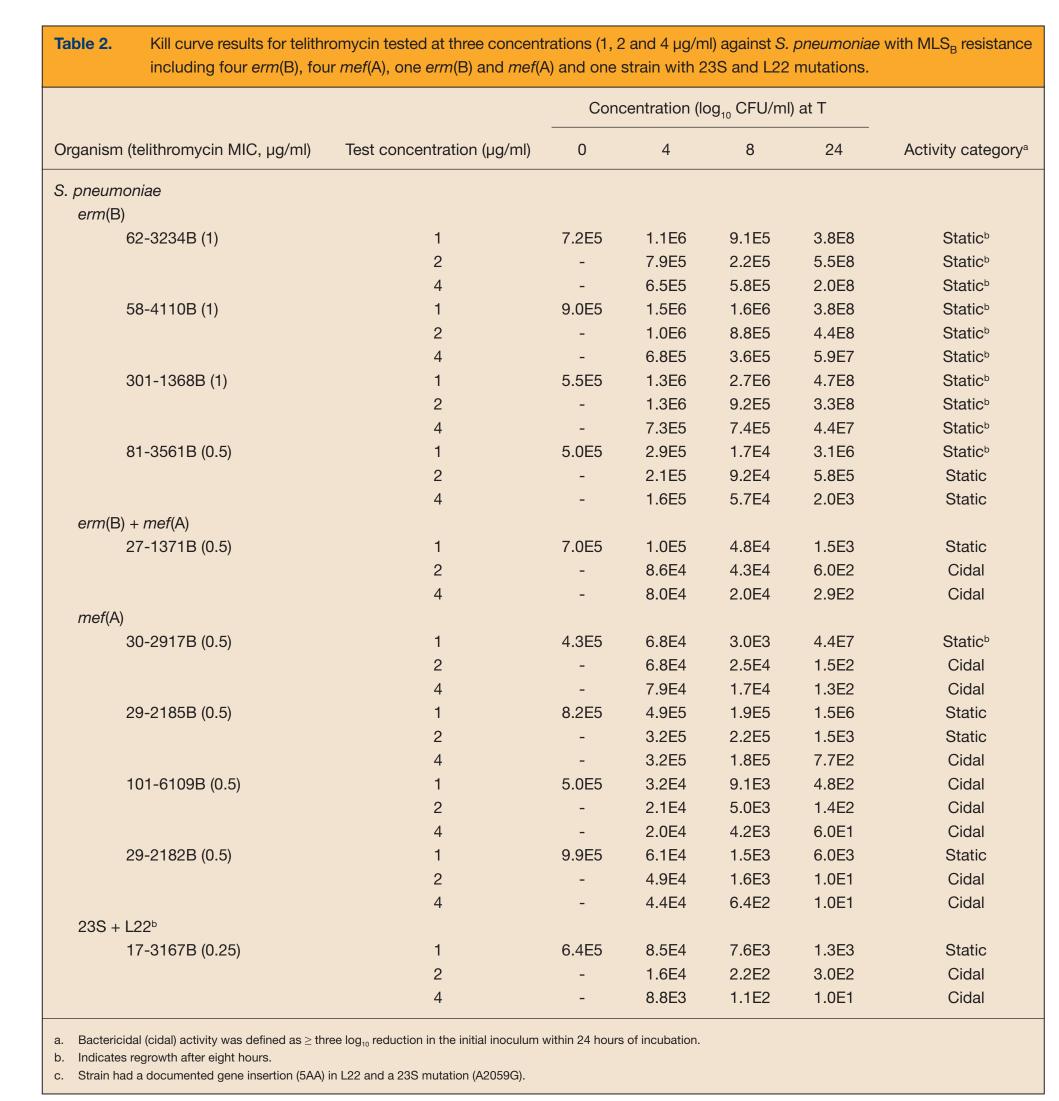
INTRODUCTION

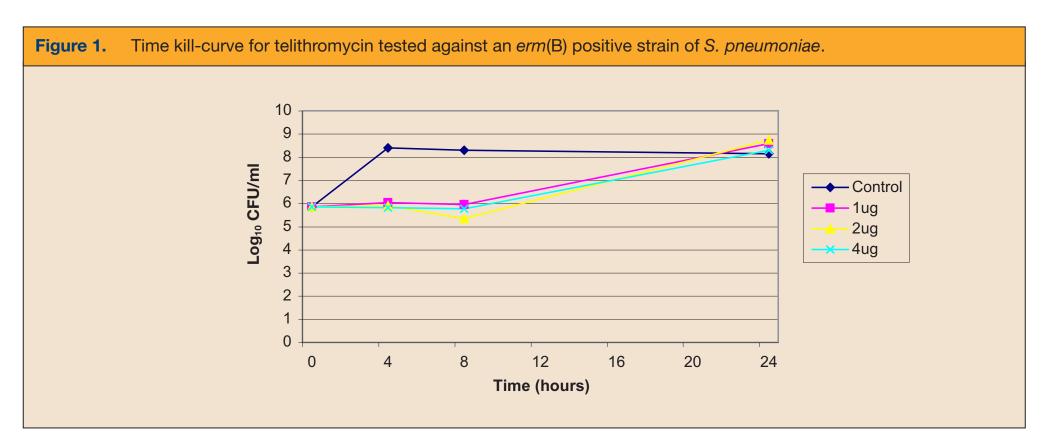
The ketolide class of antimicrobial agents offers an advantage over other macrolide-lincosamide-streptogramin (MLS_B) compounds against Streptococcus pneumoniae due to the lack of cross resistance. Telithromycin is a ketolide that has been released for clinical use against community-acquired respiratory infections including pneumonia, sinusitis and acute exacerbations of chronic bronchitis. S. pneumoniae is a primary pathogen related to these indications and resistance to penicillin and MLS_R agents has been documented at alarming rates in some countries. Although penicillin resistance rates vary greatly from region to region, overall resistance rates are approximately 40% worldwide. Macrolide-resistant S. pneumoniae strains are also commonly isolated with resistance mediated by efflux and methylase mechanisms.

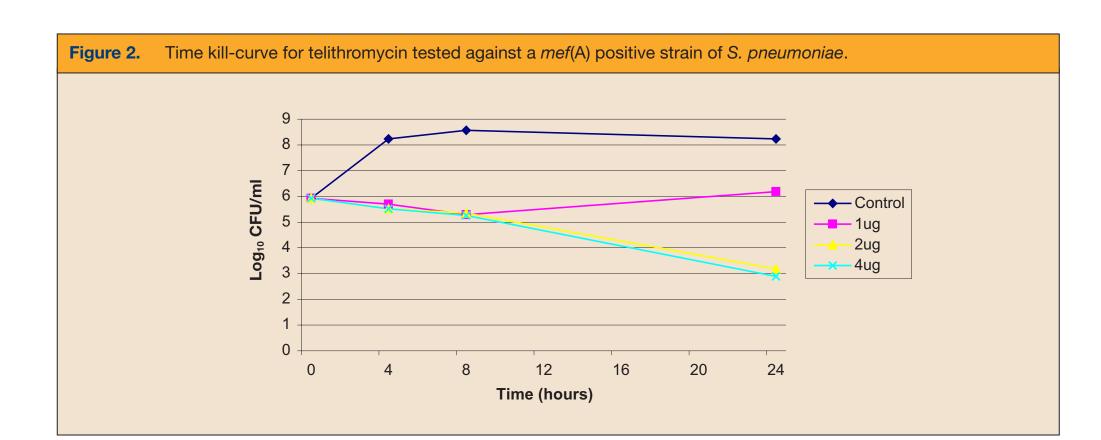
Cross resistance to MLS_B agents can be expressed constitutively or inducibly, and erythromycin has been shown to strongly induce resistance to other MLS_B agents. In contrast, ketolides have not been shown to be inducibly resistant and retain activity against MLS_B-resistant *S. pneumoniae* regardless of the mechanism of resistance. Telithromycin, among the ketolides, has been shown to have little resistance inducing potential to other members of the MLS_B class. The purpose of this study was to evaluate the ability of erythromycin to induce telithromycin resistance among *S. pneumoniae* having well characterized MLS_B resistance mechanisms. We also evaluated the kill-curve kinetics and the effect of inoculum concentration on the telithromycin MIC values tested against

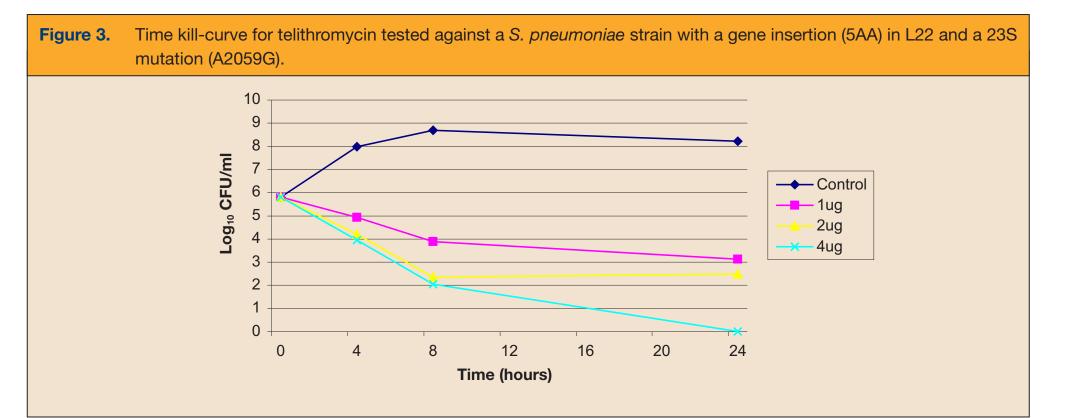
MATERIALS AND METHODS

Organisms tested. The SENTRY Antimicrobial Surveillance Program collected unique erythromycin-resistant *S. pneumoniae* isolates from patients with community-acquired pneumonia during 2001 - 2003. A subset of 51 strains, the majority of which were genotypically characterized for the presence of resistance mechanisms, were used in this study. Isolates were phenotypically and/or genotypically methylase (20 strains)- or efflux (20 strains) resistant-positive. Additionally, five strains were confirmed to have the presence of both resistance mechanisms and six strains were negative for either *mef(A)* or *erm(B)*. The six negative isolates had mutations in the 23S ribosomal target and/or L22 protein region.


Susceptibility test methods. Isolates were tested for susceptibility to MLS_B agents using NCCLS methods and commercially prepared dry-form broth microdilution panels (TREK Diagnostics, Cleveland, OH). Resistance induction was studied using 0.12 µg/ml of erythromycin/telithromycin containing wells and examining deviations of the MIC versus telithromycin tested alone. Inoculum densities of 10³, 10⁵ and 10⁷ CFU/ml were used to determine the effect of microbial concentration on telithromycin MIC values.


Molecular analysis. Multiplex rapid-cycle PCR screening and probe detection for erm(B) and mef(A) was performed on select strains. Strains negative for these genes were rRNA sequenced.


RESULTS


- Telithromycin MIC values ranged from ≤ 0.06 2 µg/ml for the MLS_B resistant strains used for these studies (data not shown).
- In the presence of erythromycin (induction), telithromycin MIC values increased for 40% (erm[B]), 45% (mef[A]), 20% (erm[B] + mef[A]) and 17% (erm[B] and mef[A] negative) of the strains with these characterized resistance patterns
- The effect of inoculum concentration on telithromycin is shown in Table 1. At lower inoculum concentrations the percentage of strains with lower MIC values was 55%, 35%, 100% and 17% for erm(B), mef(A), erm(B) + mef(A) and negative for erm(B) and mef(A), respectively. Higher MIC values were noted at higher inoculum concentrations for 45%, 50%, 60% and 17% of strains with these resistance mechanisms, respectively.
- Time kill studies (Table 2) indicate that strains with an erm(B) resistance mechanism were typically held static by telithromycin from T₀ to T₈ hours with regrowth after 8 hours of incubation regardless of the ketolide concentration tested (Figure 1). Strains with other MLS_B resistance mechanisms were also held static at a telithromycin concentration of 1 µg/ml with cidal activity identified only at higher concentrations (Figure 2 and 3).

Resistance mechanism	Test condition	MIC variation (log ₂ dilutions)									
		-4	-3	-2	-1	0	+1	+2	+3	+4	+5
erm(B) (20)	+ erythromycin ^a	-	-	-	-	12	6	1	1	-	-
	low inoculum ^b	-	1	3	7	9	-	-	-	-	-
	high inoculum ^c	-	-	-	-	11	3	2	1	3	-
mef(A) (20)	+ erythromycin	-	-	-	-	11	6	3	-	-	-
	low inoculum	-	-	-	7	13	-	-	-	-	-
	high inoculum	-	-	1	-	9	9	1	-	-	-
erm(B) + mef(A) (5)	+ erythromycin	-	-	-	-	4	1	-	-	-	-
	low inoculum	-	-	1	4	-	-	-	-	-	-
	high inoculum	-	-	-	1	1	2	1	-	-	-
negative (6) ^d	+ erythromycin	-	-	-	-	5	1	-	-	-	-
	low inoculum	-	-	-	1	5	-	-	-	-	-
	high inoculum	-	-	-	-	5	1	-	-	-	-

CONCLUSIONS

- Following erythromycin induction, telithromycin MIC values increased for S. pneumoniae isolates having documented MLS_B resistance mechanisms.
- A correlation between elevated telithromycin MIC values and the adverse effect of inoculum concentrations was clearly established with S. pneumoniae.
- Telithromycin generally produced bacteriostatic activity against S. pneumoniae isolates with erm(B) resistance mechanisms which typically showed rapid regrowth after eight hours of incubation. Strains with other MLS_B resistance mechanisms were inhibited at a bactericidal level for telithromycin concentrations of $\geq 2 \mu g/ml$.
- The presence of MLS_B mechanisms in *S. pneumoniae* can adversely affect telithromycin MIC values when tested at higher bacterial concentrations and after erythromycin induction.