The organisms were derived from patients hospitalized in Europe and the Americas. Cross-susceptibility of the bacterial groups primarily sought to select a doripenem surrogate marker. For comparison purposes, the break point for imipenem (≤2 g/mL) was used for Enterobacteriaceae (1494 strains), Acinetobacter spp. (3491; includes 2253 Acinetobacter baumannii), and Pseudomonas aeruginosa (109 strains). A comment in CLSI M100-S17 states “ampicillin susceptibility can be used to predict imipenem susceptibility providing the strain is confirmed to be an Enterobacteriaceae.” Table 1 and Figure 2 clearly demonstrate that doripenem susceptibility was accurately predicted by susceptibility of all Enterobacteriaceae (Figure 1: 13.1% very major errors, 4.9% minor errors). The 2253 Acinetobacter baumannii data was also analyzed separately (Figure 1: 3.3% very major and 1.2% minor errors).

For P. aeruginosa (Table 2), both imipenem and doripenem could be used to predict susceptibility accurately with a 0.4% very major error rate. Overall, these rates for doripenem (0.1% very major and 0.0% major errors) were determined of all organisms tested at the doripenem MIC ≤0.12 g/mL and in the imipenem susceptible zone. The overall absolute categorical agreement for Enterobacteriaceae (Table 1) ranged from 90.2% susceptible to 97.8% susceptible (Figure 3). No very major errors were observed for any of the Enterobacteriaceae, ampicillin and susceptibility testing was used as surrogate markers for doripenem susceptibility.

Conclusions

- Clinical and laboratory data indicate that doripenem susceptibility testing is best utilized as the doripenem surrogate for Enterobacteriaceae, ampicillin, and meropenem.

For comparison purposes, the break point for imipenem (≤2 g/mL) was used for Enterobacteriaceae (1494 strains), Acinetobacter spp. (3491; includes 2253 Acinetobacter baumannii), and Pseudomonas aeruginosa (109 strains). A comment in CLSI M100-S17 states “ampicillin susceptibility can be used to predict imipenem susceptibility providing the strain is confirmed to be an Enterobacteriaceae.” Table 1 and Figure 2 clearly demonstrate that doripenem susceptibility was accurately predicted by susceptibility of all Enterobacteriaceae (Figure 1: 13.1% very major errors, 4.9% minor errors). The 2253 Acinetobacter baumannii data was also analyzed separately (Figure 1: 3.3% very major and 1.2% minor errors).

For P. aeruginosa (Table 2), both imipenem and doripenem could be used to predict susceptibility accurately with a 0.4% very major error rate. Overall, these rates for doripenem (0.1% very major and 0.0% major errors) were determined of all organisms tested at the doripenem MIC ≤0.12 g/mL and in the imipenem susceptible zone. The overall absolute categorical agreement for Enterobacteriaceae (Table 1) ranged from 90.2% susceptible to 97.8% susceptible (Figure 3). No very major errors were observed for any of the Enterobacteriaceae, ampicillin and susceptibility testing was used as surrogate markers for doripenem susceptibility.

Conclusions

- Clinical and laboratory data indicate that doripenem susceptibility testing is best utilized as the doripenem surrogate for Enterobacteriaceae, ampicillin, and meropenem.

For comparison purposes, the break point for imipenem (≤2 g/mL) was used for Enterobacteriaceae (1494 strains), Acinetobacter spp. (3491; includes 2253 Acinetobacter baumannii), and Pseudomonas aeruginosa (109 strains). A comment in CLSI M100-S17 states “ampicillin susceptibility can be used to predict imipenem susceptibility providing the strain is confirmed to be an Enterobacteriaceae.” Table 1 and Figure 2 clearly demonstrate that doripenem susceptibility was accurately predicted by susceptibility of all Enterobacteriaceae (Figure 1: 13.1% very major errors, 4.9% minor errors). The 2253 Acinetobacter baumannii data was also analyzed separately (Figure 1: 3.3% very major and 1.2% minor errors).

For P. aeruginosa (Table 2), both imipenem and doripenem could be used to predict susceptibility accurately with a 0.4% very major error rate. Overall, these rates for doripenem (0.1% very major and 0.0% major errors) were determined of all organisms tested at the doripenem MIC ≤0.12 g/mL and in the imipenem susceptible zone. The overall absolute categorical agreement for Enterobacteriaceae (Table 1) ranged from 90.2% susceptible to 97.8% susceptible (Figure 3). No very major errors were observed for any of the Enterobacteriaceae, ampicillin and susceptibility testing was used as surrogate markers for doripenem susceptibility.

Conclusions

- Clinical and laboratory data indicate that doripenem susceptibility testing is best utilized as the doripenem surrogate for Enterobacteriaceae, ampicillin, and meropenem.

For comparison purposes, the break point for imipenem (≤2 g/mL) was used for Enterobacteriaceae (1494 strains), Acinetobacter spp. (3491; includes 2253 Acinetobacter baumannii), and Pseudomonas aeruginosa (109 strains). A comment in CLSI M100-S17 states “ampicillin susceptibility can be used to predict imipenem susceptibility providing the strain is confirmed to be an Enterobacteriaceae.” Table 1 and Figure 2 clearly demonstrate that doripenem susceptibility was accurately predicted by susceptibility of all Enterobacteriaceae (Figure 1: 13.1% very major errors, 4.9% minor errors). The 2253 Acinetobacter baumannii data was also analyzed separately (Figure 1: 3.3% very major and 1.2% minor errors).

For P. aeruginosa (Table 2), both imipenem and doripenem could be used to predict susceptibility accurately with a 0.4% very major error rate. Overall, these rates for doripenem (0.1% very major and 0.0% major errors) were determined of all organisms tested at the doripenem MIC ≤0.12 g/mL and in the imipenem susceptible zone. The overall absolute categorical agreement for Enterobacteriaceae (Table 1) ranged from 90.2% susceptible to 97.8% susceptible (Figure 3). No very major errors were observed for any of the Enterobacteriaceae, ampicillin and susceptibility testing was used as surrogate markers for doripenem susceptibility.