# C2 - 3862

ICAAC/IDSA 2008 JMI Laboratories North Liberty, IA, USA www.jmilabs.com 319.665.3370, fax 319.665.3371 rodrigo-mendes@jmilabs.com

# Outbreak Caused by a Clone of OXA-23- or OXA-58-Producing Acinetobacter baumannii in a Rome Hospital: First Outbreak of bla<sub>oxA-23</sub>-carrying A. baumannii in Italy

### AMENDED ABSTRACT

**Background**: Acinetobacter spp. are an important opportunistic pathogen associated with increasing reports of carbapenem resistance, mainly due to carbapenem-hydrolyzing oxacillinases (CHCDB). We report an outbreak caused by OXA-23- or -58-producing Acinetobacter spp.

**Methods:** 34 *Acinetobacter* spp. were consecutively collected during 2007 at a single hospital in Rome and centrally processed using CLSI broth microdilution methods. Isolates showing MIC of  $\geq 8 \,\mu g/ml$  for carbapenems were screened for CHCDB and MBL by PCR, followed by sequencing. Plasmid analysis and gene location were performed by Southern blot and hybridization. Clonality was evaluated by PFGE.

**Results**: 30 (88.2%) *Acinetobacter* spp. isolates met the screening criteria and were PCR-positive for *bla*<sub>OXA-23</sub> (90.0%) or *bla*<sub>OXA-58</sub> (10.0%). All isolates showed multidrug-resistance phenotype, remaining susceptible only to polymyxin B, colistin and tigecycline. Isolates were recovered from bacteremia (86.7%) or pneumonia (13.3%). The majority (66.6%) of the patients were in the ICU and 1 (3.3%) death was attributed to the infection (sepsis). Regardless of the CHCDB, 25 isolates were genetically related (type A) and the remaining isolates, including a carbapenem-susceptible strain, clustered within type B. No record of international travel was documented for the index cases. Among isolates belonging to clone A, *bla*<sub>OXA-23</sub> was chromosomally- and plasmid-located, while bla<sub>OXA-23</sub> or bla<sub>OXA-58</sub> harbored by isolates belonging to clone B were plasmid-located.

Conclusions: This appears to be the first report of an outbreak due to OXA-23-producing Acinetobacter spp. in Italy. These isolates were responsible for a persistent outbreak mostly due to clonal dissemination. Although the attributable mortality rate was low, these findings emphasize the ability of this pathogen to spread, and to acquire and spread carbapenem-resistance genes present in the hospital environment.

#### INTRODUCTION

During the past two decades, several reports have described the occurrence of nosocomial outbreaks caused by Acinetobacter spp. The most clinically relevant species within this genus, A. baumannii, possesses the ability to survive for prolonged time periods throughout healthcare environments, colonizing either dry surfaces or human skin; thereby, contributing to the nosocomial spread of this microorganism.

A. baumannii has also been associated with increasing rates of carbapenem resistance, usually due to the acquisition of metallo-Blactamase- (MBL), and more usually carbapenem-hydrolyzing class D B-lactamase-encoding genes (CHCDB). In this study, we investigated the dissemination and mechanisms of carbapenem resistance among A. baumannii recovered from patients hospitalized in different units of the Polyclinic Agostino Gemelli – Università Cattolica del Sacro Cuore in Rome, Italy.

### MATERIALS AND METHODS

Bacterial isolates. During 2007, a total of 34 non-repetitive Acinetobacter spp. (one per patient) were recovered from patients hospitalized in the Polyclinic Agostino Gemelli (Rome, Italy). This 2,000-bed university hospital is one of the largest and more important medical institutions in Italy, treating more than 70,000 inpatients each year. Isolates were later forwarded to a central monitoring laboratory (JMI Laboratories, North Liberty, Iowa, USA) as part of the SENTRY Antimicrobial Surveillance Program.

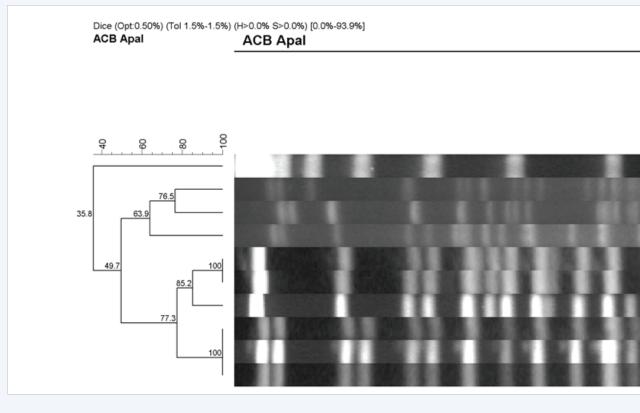
Antimicrobial susceptibility testing. Isolates were tested for susceptibility using the broth microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI; M7-A7, 2006). Cation-adjusted Mueller-Hinton broth was used in validated panels manufactured by TREK Diagnostics (Cleveland, OH). MIC values were interpreted by the M100-S18 document (CLSI, 2008) for Acinetobacter spp., except for tigecycline MIC results that were interpreted according to the Enterobacteriaceae breakpoints approved by the United States Food and Drug Administration (USA-FDA;  $\leq 2$  and  $\geq 8 \mu g/$ ml for susceptibility and resistance, respectively). Quality control (QC) was performed using Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853. All QC results were within published ranges.

Screening for CHCDB- and MBL-encoding genes. Isolates showing MIC values for imipenem and meropenem at  $\geq 8 \mu g/ml$  were screened using primers able to detect and distinguish three subgroups of acquired CHCDB-encoding genes (bla<sub>OXA-23</sub>-, bla<sub>OXA-24</sub>- and bla<sub>OXA-</sub> <sub>58</sub>-like) and the intrinsic subgroup of *bla*<sub>OXA-51</sub>-like in a multiplex PCR assay format. MBL screening was performed using generic primers able to detect VIM-, IMP-, SPM-1-, GIM-1-, SIM-1-like-encoding genes in a multiplex real-time platform. Amplicons obtained were sequenced on both strands. The nucleotide sequences and deduced amino acid sequences were analyzed using Lasergene software package (DNASTAR, Madison, WI) and compared with the sequences available through the internet using BLAST (http://www.ncbi.nlm.nih.gov/blast/).

Plasmid analysis and CHCDB-encoding gene location. Plasmid DNA was extracted using the Plasmid DNA Midi Kit (Qiagen GmbH, Hilden, Germany), separated on 1% agarose gel in TAE buffer on a Criterion Sub-cell GT system (Bio-Rad, Hercules, CA). Plasmid sizes were determined with GelCompar II software using plasmid bands from *E. coli* NCTC 50192 as standard references. Band position tolerance and optimization were set at 1.0% and 0.5%, respectively. Total DNA from clinical isolates was digested with I-Ceu-I and DNA fragments and plasmids were transferred onto a nylon membrane by Southern blot. Specific labeled probes for  $bla_{OXA-23}$ ,  $bla_{OXA-58}$  and 16S rRNA were used for hybridization.

Molecular typing. Pulsed-field Gel electrophoresis (PFGE) of bacterial genomic DNA digested with Apal followed by pattern analysis using the GelCompar II software (Applied Math, Kortrijk, Belgium) were performed to investigate clonality. Percent similarities were identified on a dendrogram derived from the unweighted pair group method using arithmetic averages and based on Dice coefficients. Band position tolerance and optimization were set at 1.5% and 0.5%, respectively, and isolates showing similarity coefficient  $\geq 87\%$  were considered as genetically related. One carbapenem-susceptible isolate recovered from the same institution during the study period and representative isolates of European clone I and II were also included in the pattern analysis for comparison purposes (see Figure 1).

#### RESULTS


- Thirty isolates showed resistance phenotype to imipenem, meropenem, ampicillin/sulbactam and tetracycline. The majority of isolates (80%) were also resistant to aminoglycosides. Only polymyxin B, colistin and tigecycline exhibited acceptable in vitro activity results (susceptibility, >90%; Table 1).
- These isolates were recovered from blood (87.1%) or skin and soft tissue (12.9%), mostly from patients hospitalized in intensive care units (60%; Table 2). Only one death was attributed to the infection and the majority of these patients were treated with colistin or tigecycline.
- PCR followed by sequencing detected bla<sub>OXA-23</sub> and *bla*<sub>OXA-58</sub>. MBL were not detected among the resistant isolates and both types of carbapenamases (CHCDB and MBL) were not detected in the susceptible isolate.
- PFGE results demonstrated the presence of two clones (A and B) harboring either  $bla_{OXA-23}$  or  $bla_{OXA-58}$ , and the imipenem-susceptible A. baumannii clustered within clone B (Figure 1). Representative isolates of European clones I and II did not match with either clone A or B.
- OXA-23-producing *A. baumannii* belonging to cluster A displayed four plasmid bands and bla<sub>OXA-23</sub> probe hybridised with the 32-kb band (Table 2). This same cluster of isolates showed hybridization signals from the 487-kb chromosomal DNA bands. One isolate belonging to cluster A harboured *bla*<sub>OXA-58</sub>, which was located in the 20-kb plasmid band.
- Among those *A. baumannii* belonging to cluster B, two isolates harboured *bla*<sub>OXA-23</sub> and showed two plasmid bands (44- and 27-kb) and hybridization signals were obtained from the 44-kb band. Five isolates, also belonging to clone B harbouring bla<sub>OXA-58</sub>, showed two plasmid bands (44- and 27kb) and the CHCDB gene was located in the 44-kb plasmid band (Table 2). One OXA-58-producing strain belonging to clone B (subtype B1) exhibited multiple plasmid bands and  $bla_{OXA-58}$  hybridization signals were observed in the 49- and 22-kb bands.

## RE MENDES, T SPANU, M CASTANHEIRA, L DESHPANDE, RN JONES, G FADDA JMI Laboratories, North Liberty, IA, USA; Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy

 
Table 1. Activity of antimicrobial agents tested against CHCDB producing Acinetobacter spp. recovered among units at the Polyclinic Agostino Gemelli (Rome, Italy) in 2007. Antimicrobial agent % susceptible/resistant MIC Range 0.0 / 90.0 Ampicillin/sulbactam 16 - >16 Ceftazidime 4 - >16 3.3 / 93.3 >16 >16 0.0 / 96.7 Cefepime >16 >16 16 - >16 0.0 / 100.0 >8 >8 Imipenem 0.0 / 93.3 Meropener >8 >8 8 ->8 0.0 / 100.0 >4 >4 Levofloxacin >32 >32 2 - >32 20.0 / 80.0 Amikacin 20.0 / 80.0 >8 >8 ≤2 - >8 Gentamicin 0.5 - >16 20.0 / 80.0 Tobramycir >16 >16 Tetracycline 0.0 / 96.7 >8 >8 >8 0.25 - 4 93.3 / 6.7 0.5 Tigecycline 100.0 ≤0.5 ≤0.5 ≤0.5 100.0 Polymyxin ≤0.5 - 1 ≤0.5 <0.5

According to CLSI M100-S18, except for tigecycline, which was determined according to the terobacteriaceae breakpoints approved by the USA-FDA (breakpoints for susceptibility,  $\leq 2 \mu g/ml$ ; breakpoints for resistance,  $\geq 8 \mu g/ml$ ).

| igure 1. | PFGE profile of Apal-diger<br>representative isolates be<br>clones I and II and those for<br>Dendrogram derived from<br>method using arithmetic a<br>coefficients. Band position<br>were set at 1.5% and 0.5%<br>similarity coefficient ≥87%<br>related. Similarity coefficient<br>susceptibility phenotype a<br>baumannii COL 20820 refer<br>ladder profiles for compar-<br>applicable". |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



|         |                       | Admission |     |     | Culture date |                        |                  | Primary                |                      | Code    |        | CHCDB                 | PFGE    | Plasmid                          |
|---------|-----------------------|-----------|-----|-----|--------------|------------------------|------------------|------------------------|----------------------|---------|--------|-----------------------|---------|----------------------------------|
| Isolate | Specimen <sup>a</sup> | (2007)    | Age | Sex | (2007)       | Mortality <sup>b</sup> | ICU <sup>c</sup> | diagnosis <sup>d</sup> | Service <sup>e</sup> | Service | PCR    | location <sup>f</sup> | pattern | Profile (kb) <sup>9</sup>        |
| 12298   | В                     | 28-Apr    | 75  | F   | 3-May        | Ν                      | Ν                | NEU                    | NS                   | 144     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12299   | В                     | 30-Apr    | 74  | Μ   | 4-May        | Y                      | Y                | CAR                    | ICU                  | 138     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12302   | В                     | 2-May     | 23  | Μ   | 7-May        | Ν                      | Y                | TRM                    | OTH                  | 704     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12319   | В                     | 30-May    | 73  | F   | 4-Jun        | Ν                      | Υ                | NEU                    | ICU                  | 138     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12335   | В                     | 16-Jun    | 67  | Μ   | 20-Jun       | Ν                      | Υ                | GI                     | ICU                  | 138     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12354   | В                     | 10-Jul    | 17  | Μ   | 18-Jul       | Ν                      | Y                | NEU                    | NS                   | 150     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12371   | В                     | 12-Aug    | 65  | Μ   | 18-Aug       | Ν                      | Υ                | CAR                    | MED                  | 113     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12373   | В                     | 14-Aug    | 66  | Μ   | 19-Aug       | Ν                      | Ν                | CAR                    | ICU                  | 139     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12383   | В                     | 31-Aug    | 70  | Μ   | 7-Sep        | Ν                      | Ν                | PULM                   | MED                  | 148     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12402   | В                     | 26-Sep    | 58  | F   | 2-Oct        | Ν                      | Ν                | TRM                    | ICU                  | 182     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12403   | В                     | 28-Sep    | 73  | М   | 4-Oct        | Ν                      | Y                | NEU                    | ICU                  | 138     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12413   | В                     | 6-Oct     | 55  | Μ   | 16-Oct       | Ν                      | Y                | TRM                    | OTH                  | 163     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12422   | В                     | 16-Oct    | 93  | Μ   | 21-Oct       | Ν                      | Ν                | CAR                    | MED                  | 101     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12424   | В                     | 18-Oct    | 55  | Μ   | 23-Oct       | Ν                      | Y                | TRM                    | ICU                  | 139     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12432   | В                     | 27-Oct    | 66  | F   | 6-Nov        | Ν                      | Ν                | CAR                    | ICU                  | 139     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12441   | В                     | 10-Nov    | 80  | Μ   | 16-Nov       | Ν                      | Ν                | CAR                    | MED                  | 101     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12456   | В                     | 18-Nov    | 68  | Μ   | 26-Nov       | Ν                      | Y                | TRM                    | OTH                  | 701     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 2851    | S                     | 5-Jan     | 46  | Μ   | 24-Jan       | Ν                      | Ν                | CANCER                 | HEM                  | 174     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 2871    | S                     | 5-Nov     | 50  | F   | 29-Jan       | Ν                      | Y                | TRM                    | ICU                  | 138     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12384   | В                     | 29-Aug    | 80  | F   | 8-Sep        | Ν                      | Ν                | CAR                    | ICU                  | 139     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 12428   | В                     | 26-Oct    | 80  | F   | 3-Nov        | Ν                      | Y                | NEU                    | OTH                  | 106     | OXA-23 | P/C                   | А       | <b>32</b> , 27, 13 and 10        |
| 6815    | В                     | 7-Apr     | 77  | Μ   | 15-Apr       | Ν                      | Υ                | PULM                   | ICU                  | 138     | OXA-58 | Р                     | А       | 20                               |
| 2850    | S                     | 5-Nov     | 82  | F   | 24-Jan       | Ν                      | Y                | NEU                    | ICU                  | 138     | OXA-23 | Р                     | В       | <b>44</b> and 27                 |
| 12439   | В                     | 5-Nov     | 80  | F   | 15-Nov       | Ν                      | Y                | NEU                    | ICU                  | 138     | OXA-23 | Р                     | В       | <b>44</b> and 27                 |
| 2863    | S                     | 15-Jan    | 29  | Μ   | 26-Jan       | Ν                      | Y                | TRM                    | ICU                  | 138     | OXA-58 | Р                     | В       | <b>44</b> and 27                 |
| 6807    | В                     | 3-Apr     | 70  | F   | 10-Apr       | Ν                      | Y                | PULM                   | ICU                  | 138     | OXA-58 | Р                     | В       | 44 and 27                        |
| 12379   | В                     | 22-Aug    | 70  | Μ   | 2-Sep        | Ν                      | Y                | PULM                   | OTH                  | 702     | OXA-58 | Р                     | В       | <b>44</b> and 27                 |
| 12397   | В                     | 10-Sep    | 50  | Μ   | 15-Sep       | Ν                      | Y                | TRM                    | ICU                  | 138     | OXA-58 | Р                     | В       | <b>44</b> and 27                 |
| 12359   | В                     | 30-Jul    | 78  | F   | 4-Aug        | Ν                      | Y                | NEU                    | ICU                  | 138     | OXA-58 | Р                     | В       | <b>44</b> and 27                 |
| 6811    | В                     | 5-Apr     | 75  | F   | 11-Apr       | Ν                      | Y                | PULM                   | ICU                  | 138     | OXA-58 | Р                     | B1      | <b>49</b> , 39, <b>22</b> and 14 |

a. Specimen. B – Blood; S – Skin and soft tissue

b. Mortality related to infection.

Intensive care unit.

1. Primary diagnosis. NEU – Neurologic: CAR – Cardiovascular: TRM – Trauma: GI – Gastrointestinal; PULM – Pulmonary.

e. Service. NS - Neurosurgery: OTH - Other: CAR - Cardiothoracic/Pulmonary: MED - Internal Medicine; HEM - Hematology/Oncology; ICU - Intensive care unit.

CHCDB location. P – Plasmid; C – Chromosomal.

g. Plasmid bands showing hybridization signal with *bla<sub>OXA</sub>*-specific probes are in bold.



ted genomic DNA from longing to the European pund in this study (A and B). the unweighted pair group erages and based on Dice tolerance and optimization , respectively. Isolates showing were considered as genetical ent, isolates, PFGE pattern and re shown, as well as the A. ence strain and the Lambda on purposes. NA reads "Not

| Isolate           | PFGE pattern       | Phenotype                     |
|-------------------|--------------------|-------------------------------|
| Lambda ladder     | Reference standard | NA*                           |
| COL20820          | Reference strain   | NA*                           |
| European clone I  | European clone I   | NA*                           |
| European clone II | European clone II  | NA*                           |
| 6751              | В                  | Carbepenem-susceptible        |
| 6807              | В                  | Carbapenem-resistant (OXA-58) |
| 6811              | B1                 | Carbapenem-resistant (OXA-58) |
| 12298             | А                  | Carbapenem-resistant (OXA-23) |
| 6815              | А                  | Carbapenem-resistant (OXA-58) |
| 12371             | А                  | Carbapenem-resistant (OXA-23) |

#### CONCLUSIONS

- This study describes the dissemination of two complex carbapenem-resistant A. baumannii clusters among units in a large Italian hospital.
- Only polymyxins and tigecycline remained effective in vitro (Table 1).
- Several studies have reported the detection of OXA-58-producing A. baumannii in Italy, suggesting bla<sub>OXA-58</sub>-carrying A. baumannii has become endemic; however, reports about bla<sub>OXA-23</sub>- or *bla*<sub>OXA-24</sub>-like genes are still limited in this country.
- The presence of multiple copies of CHCDBencoding genes provides increased level of resistance among these clinical isolates.
- Although death related to infection rates were very low in this study (3.2%), these findings emphasize the ability of A. baumannii isolates to acquire and also spread different resistance determinants circulating in the hospital environment.

#### SELECTED REFERENCES

- Clinical and Laboratory Standards Institute (2006). M7-A7, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - seventh edition. Wayne, PA: CLSI.
- Clinical and Laboratory Standards Institute (2008). M100-S18, Performance standards for antimicrobial susceptibility testing, 18th informational supplement. Wayne, PA: CLSI.
- D'Andrea MM, Giani T, Luzzaro F, Rossolini GM (2008). First detection of carbapenem-resistant Acinetobacter baumannii producing the OXA-24 carbapenamases in Italy, Abstr. O300. 18th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Barcelona, Spain. ESCMID.
- . Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, Pignatari AC, Tufik S (2007). Rapid detection and identification of metallo-B-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45: 544-547.
- Mezzatesta ML, Trovato G, Gona F, Nicolosi VM, Nicolosi D, Carattoli A, Fadda G, Nicoletti G, Stefani S (2008). In vitro activity of tigecycline and comparators against carbapenem-susceptible and resistant Acinetobacter baumannii clinical isolates in Italy. Ann Clin Microbiol Antimicrob 7: 4.
- 6. Poirel L, Nordmann P (2006). Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla<sub>OXA-58</sub> in Acinetobacter baumannii. Antimicrob Agents *Chemother* 50: 1442-1448.
- Seifert H, Dolzani L, Bressan R, van der Reijden T, van Strijen B, Stefanik D, Heersma H, Dijkshoorn L (2005). Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J *Clin Microbiol* 43: 4328-4335.
- Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. Int J Antimicrob Agents 27: 351-353.