EVALUATION OF THE ACCURACY OF THE ETEST MACROMETHOD FOR DETECTION OF HETEROGENEOUS VANCOMYCIN-INTERMEDIATE S. AUREUS (hVISA) STRAINS

HS SADER, RN JONES, M RYBAK JMI Laboratories, North Liberty, IA; Wayne State University, Detroit, MI.

ABSTRACT

Background: There are no standard methods or clear guidelines for hVISA detection. Population analysis profiling (PAP) is considered the gold standard, but this approach is laborintensive and expensive. The Etest macromethod (MET) exhibited high sensitivity and specificity compared to PAP in previous studies, and has been used as screening or definitive test to report the prevalence of hVISA. We evaluated the accuracy of MET using various criteria

Methods: 268 oxacillin-resistant S. aureus were selected from 1800 strains (9 USA hospitals) based on increased MIC to vancomycin (VAN; > 1 µg/ml) or daptomycin (DAP; > 0.5 µg/ml) or increased VAN MBC/MIC ratio (≥32). The susceptibility (S) to VAN and teicoplanin (TEI) was assessed by Etest using 2 McFarland inoculum density (MET). PAP was determined on strains with MET subpopulation detected at MIC level $\geq 4 \mu g/ml$ for VAN and $\geq 8 \mu g/ml$ for TEI, or ≥ 12 μ g/ml for TEI alone, and also 9 randomly selected strains (1 per hospital) with TEI MIC < 4 ug/ml, Mu3, Mu50 and S, aureus ATCC 29213 were tested as controls and all results were within expected ranges.

Results: PAP was positive on 36 of 52 strains tested. Only 20 of 36 PAP positive strains met the most commonly used MET criteria for hVISA (TEI ≥12 or TEI ≥8 and VAN ≥8 µg/ml), and 3 strains that met this criteria were negative by PAP, including 2 strains with TEI at 12 and VAN at 3 µg/ml. The accuracies of the MET with various criteria are shown in the Table 1.

Conclusions: The accuracy of MET varies significantly with the criteria used for positivity, and the most frequently used criteria to define hVISA demonstrated low sensitivity, indicating that the prevalence of hVISA could be higher than currently appreciated.

INTRODUCTION

There are no standard methods or clear guidelines for detection of Staphylococcus aureus strains having hetero-resistance to vancomycin (hVISA). Population analysis profiling (PAP) is considered the "gold standard", but this approach is laborintensive and costly.

The Etest macromethod (MET) exhibited high sensitivity and specificity compared to PAP in initial studies, and has been used as screening or as the definitive test to assess the prevalence of hVISA. The criteria most frequently used to characterize hVISA are those described by Wootton et al. [2007], e.g. MIC values ≥ 8 μ g/ml for both vancomycin and teicoplanin or \geq 12 μ g/ml for teicoplanin alone after 48 hours of incubation at 35°C.

In this study, we evaluated the accuracy of MET by comparing the results of this method using various criteria with the results obtained by PAP analysis. We also evaluated the bactericidal activities of vancomycin and daptomycin in a large collection of methicillin-resistant Staphylococcus aureus (MRSA) strains from 9 major United States (USA) medical centers, each representing a different census region.

METHODS

Bacterial isolates and susceptibility testing:

As part of a large multicenter study, 1,800 MRSA strains from bloodstream infections were collected in 9 USA medical centers (one from each census regions). Each medical center was requested to randomly select 40 strains per year during the 2002-2006 period (total of 200 MRSA strains per center). All isolates were susceptibility tested against vancomycin, daptomycin and various other antimicrobial agents by reference broth microdilution methods according to Clinical and Laboratory Standards Institute (CLSI) M7-A7 [2006] guidelines. Mueller-Hinton broth adjusted to contain physiological levels of calcium (50 mg/L) was used when testing daptomycin. MBC tests were performed for vancomycin and daptomycin on 50% of strains (randomly selected) by plating the broth from the MIC endpoint well and from those four log2 dilutions above the MIC for each organism onto appropriate growth media.

Etest macromethod (MET):

A subset of isolates (n = 268) showing tolerance (MBC/MIC, \geq 32) and/or increased MIC to vancomycin (>1 μ g/mI) or increased MIC to daptomycin (>0.5 µg/ml) were susceptibility tested against vancomycin and teicoplanin by MET (AB BIODISK, Solna, Sweden) using both standard manufacturer recommendations (0.5 McFarland on Mueller-Hinton agar) and a high inoculum (2 McFarland) on brain-heart infusion (BHI) agar.

Population analysis (PAP):

PAP was determined on strains detected at MIC level $\geq 4 \mu q/ml$ for vancomycin and $\ge 8 \,\mu$ g/ml for teicoplanin, or $\ge 12 \,\mu$ g/ml for teicoplanin alone with MET method. Randomly selected strains (9) with low vancomycin and teicoplanin MIC values (<4 μ g/ml) were also evaluated by PAP. Mu3. Mu50 and S. aureus ATCC 29213 were tested as controls and all results were within expected ranges.

Evaluation of the accuracy of the MET for detection of hVISA strains:

Sensitivity, specificity and predictive values of various criteria for characterization of hVISA, including those published by Wootton et al. [2007] (MIC values $\geq 8 \mu g/ml$ for both vancomycin and teicoplanin or $\geq 12 \,\mu$ g/ml for teicoplanin alone after 48 hours of incubation at 35 C), were evaluated by comparing the results of the MET and PAP.

RESUL

■ Among 268 MRSA strains tested by MET, 43 exhibited MIC ≥4 μ g/ml for vancomycin and \geq 8 μ g/ml for teicoplanin, or \geq 12 µg/ml for teicoplanin alone. These 43 strains plus 9 randomly selected strains with low vancomvcin and teicoplanin MIC values (<4 µg/ml) were evaluated by PAP and 36 of those (69.2%) were characterized as hVISA by this method. The accuracy of the MET using various criteria for the detection of hVISA is shown on Table 1.

The most commonly used MET criteria for hVISA (teicoplanin \geq 12 or teicoplanin \geq 8 and vancomycin \geq 8 µg/ml) showed a sensitivity of only 55.6%, detecting only 20 of 36 PAP positive strains. Furthermore, 3 strains that met these criteria were negative by PAP, including 2 strains with teicoplanin at 12 and vancomvcin at 3 µg/ml (Table 1).

Table 1. The accuracy of the Etest macromethod (MET) using various criteria for the detection of hVISA

Positive MET criteria	Sensitivity	Specificity	Positive	Negative	Accuracy	
(subpopulation detected at			predictive	predictive		
[MIC in µg/ml])			value	value		
TEI ≥12 or TEI ≥8 and VAN ≥8 ^a	55.6%	81.3%	87.0%	44.8%	63.5%	
TEI ≥12 or TEI ≥8 and VAN ≥6	69.4%	68.8%	83.3%	50.0%	69.2%	
TEI ≥12 or TEI ≥8 and VAN ≥4	97.2%	56.2%	83.3%	90.0%	84.6%	
TEI ≥8 and VAN ≥4	97.2%	68.8%	87.5%	91.7%	88.5%	

The highest sensitivity was obtained using a positive Etest macromethod criteria as the detection of subpopulation at vancomycin MIC ≥ 4 g/ml and teicoplanin MIC ≥ 8 g/ml (97.2%). If the detection of subpopulation with teicoplanin MIC \geq 12 g/ml alone was included in the criteria, the specificity would decrease from 68.8 to 56.2% without any gain of sensitivity.

- Percentages of isolates displaying vancomycin tolerance (vancomvcin MBC/MIC ratios \geq 32 µg/ml) markedly varied by year between institutions and no clear trend in tolerance was apparent. Overall. 181 of 900 (20.1%) MRSA tested exhibited vancomycin tolerance (Figure 1), varying from 11.7% in 2004 to 27.8% in 2005 (Table 2). The occurrence of vancomycin tolerant MRSA varied from 10 to 43% among the medical centers evaluated (Table 3), and was particularly high among hVISA strains (47.2%).
- Daptomycin showed bactericidal activity against all strains tested. Daptomycin MBC/MIC ratio was 1 for 788 (87.6%) and 2 for 110 (12.2%) MRSA strains tested. The highest daptomycin MBC/MIC ratio value was 4 (only 2 [0.2%] strains; Table 2).

S												CONCLUSIONS
Figure tested	1. Sumr against	nary of 900 MR	bacteric SA strai	idal activ ns.	ities of	vancon	nycin an	d dapt	omycin		■ T c	he accuracy of the MET method varies significantly with the riteria used for positivity.
	90 80	87.6						Tole	erance	-	■ T Ic h	he most frequently used criteria to define hVISA demonstrated by sensitivity, indicating that the prevalence of hVISA could be igher than currently appreciated.
% of strains	70 60 50 40 30	41.7	18.6					21	Vancom <u>y</u> Daptom <u>y</u>		T B V O	The MET criteria for detection of hVISA should be re-evaluated. Based on the results of this study, the criteria that correlated etter with PAP analysis was teicoplanin $\ge 8 \ \mu g/ml$ and ancomycin $\ge 4 \ \mu g/ml$, with sensitivity of 97.2% but a specificity f only 68.8%.
	20 10 0	1	2	2 9.4 4 MBC	0.2	62 8	3.9 16	23	32	-	■ T h F	he occurrence of vancomycin tolerant strains was generally igh (20.1% overall), especially among hVISA strains (47.2%). lowever, no trend toward increasing prevalence of vancomycin plerant or hVISA strains overtime was observed.
Table year (2. Sumr	nary of I	bacterici ers).	dal activ	ities of	vancom	iycin and	d dapto	omycin	by	■ Ir a ir to	n contrast to vancomycin, daptomycin was highly bactericidal gainst this large collection MRSA strains from bloodstream nfections (2002-2006), including hVISA and vancomycin plerant strains
			· ·									
Year	No. of strains	1	v 2	No. of str ancomycii 4 8	ains (%) v 1 16	with MBC/ ≥32	MIC ratio o	of: Dapton 2	nycin 4	≥8	I	ACKNOWLEDGMENTS
Year 2002 2003 2004	No. of strains 180 180	73 (40.1) 73 (40.1) 88	2 33 (18.3) (23 (12.8) (38	No. of str ancomycli 4 8 21 12 11.6) (6. 20 1 11.1) (6. 15 1	ains (%) 1 16 2 6 7) (3.3) 8 1) (4.4) 3 5	with MBC/ ≥32 35 (19.4) 45 (25.0) 21	MIC ratio o 1 153 (85.0) 159 (88.3) 159	of: Dapton 2 (15.0) 20 (11.1) 20	nycin 4 0 (0.0) 1 (0.6) 1	≥8 0 (0.0) 0 (0.0)	The s the s Fish, of W	ACKNOWLEDGMENTS authors would like to thank the following investigators for kindly providing strains for tudy: Paul D Fey, University of Nebraska Medical Center (Omaha, NE); Douglas University of Colorado Health Science Center (Denver, CO); Ajit Limaye, University ashington (Seattle, WA); George Pankey, Ochsner Clinic Foundation (New Orleans
Year 2002 2003 2004 2005	No. of strains 180 180 180 180	1 73 (40.1) 73 (40.1) 88 (48.9) 62 (34.4)	2 33 (18.3) (23 (12.8) (38 (21.1) 37 (20.1)	No. of str ancomycli 4 21 11.1 11.6) 20 11.1.1) (6. 15 16 (8.3) (7.1) 13 17.2) (6.3)	ains (%) v 16 2 6 7) (3.3) 8 1) (4.4) 3 5 2) (2.8) 2 6 7) (3.3)	with MBC/ ≥32 35 (19.4) 45 (25.0) 21 (11.7) 50 (27.8)	MIC ratio of 1 153 (85.0) 159 (88.3) 159 (88.3) 166 (92.2)	of: Dapton 2 (15.0) 20 (11.1) 20 (11.1) 14 (7.8)	nycin 4 0 (0.0) 1 (0.6) 1 (0.6) 0 (0.0)	≥8 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)	The s the s Fish, of W LA); State MA); Univ	ACKNOWLEDGMENTS authors would like to thank the following investigators for kindly providing strains for study: Paul D Fey, University of Nebraska Medical Center (Omaha, NE); Douglas University of Colorado Health Science Center (Denver, CO); Ajit Limaye, University ashington (Seattle, WA); George Pankey, Ochsner Clinic Foundation (New Orleans, James Rahal, New York Hospital Queens (New York, NY); Michael Rybak, Wayne a University (Detroit, MI); David Snydman, New England Medical Center (Boston, Lisa L. Steed, Medical University of South Carolina (Charleston, SC); Ken Waites, ersity of Alabama at Birmingham (Birmingham, AL).
Year 2002 2003 2004 2005 2006 Total	No. of strains 180 180 180 180 180 900	1 73 (40.1) 73 (40.1) 88 (48.9) 62 (34.4) 79 (43.9) 375 (41.7)	2 33 (18.3) (1 23 (12.8) (1 38 (21.1) 37 (20.1) 167 (18.6)	No. of str ancomycii 4 8 21 1: 11.6) (6. 20 1 11.1.1) (6. 15 1 (7.2) (6. 13 1: (7.2) (6. 88.9) (4. 85 50 9(-9.4) (6.	ains (%) v 16 2 6 7) (3.3) 1 8 1) (4.4) 3 5 2) (2.8) 2 6 7) (3.3) 10 4) (5.6) 5 35 2) (3.9)	with MBC/ ≥32 35 (19.4) 45 (25.0) 21 (11.7) 50 (27.8) 30 (16.7) 181 (20.1)	MIC ratio of 1 153 (85.0) 159 (88.3) 159 (88.3) 166 (92.2) 151 (83.9) 788 (87.6)	27 (15.0) 20 (11.1) 20 (11.1) 14 (7.8) 29 (16.1) 110 (12.2)	nycin 4 0 (0.0) 1 (0.6) 1 (0.6) 0 (0.0) 0 (0.0) 2 (0.2)	28 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)	The the s Fish, of W LA); State MA); Univ	ACKNOWLEDGMENTS authors would like to thank the following investigators for kindly providing strains for tudy: Paul D Fey, University of Nebraska Medical Center (Omaha, NE); Douglas University of Colorado Health Science Center (Denver, CO); Ajit Limaye, University ashington (Seattle, WA); George Pankey, Ochsner Clinic Foundation (New Orleans, James Rahal, New York Hospital Queens (New York, NY); Michael Rybak, Wayne a University (Detroit, MI); David Snydman, New England Medical Center (Boston, Lisa L. Steed, Medical University of South Carolina (Charleston, SC); Ken Waites, ersity of Alabama at Birmingham (Birmingham, AL).
Year 2002 2003 2004 2005 2006 Total	No. of strains 180 180 180 180 180 900	1 73 (40.1) 73 (40.1) 88 (48.9) 62 (34.4) 79 (43.9) 375 (41.7)	2 33 (18.3) (23 (12.8) (38 (21.1) 37 (20.1) 167 (18.6)	No. of str ancomycli 4 8 21 1: 11.6) (6. 20 1: 11.1.1) (6. 15 1 (8.3) (7. 13 1: (7.2) (6. 16 8 (8.9) (4. 85 5 (9.4) (6.	ains (%) v 16 2 6 7) (3.3) 8 1) (4.4) 3 5 2) (2.8) 2 6 7) (3.3) 10 4) (5.6) 3 35 2) (3.9) 	xith MBC/ ≥32 35 (19.4) 45 (25.0) 21 (11.7) 50 (27.8) 30 (16.7) 181 (20.1)	MIC ratio o 1 153 (85.0) 159 (88.3) 159 (88.3) 166 (92.2) 151 (83.9) 788 (87.6)	of: Dapton 2 27 (15.0) 20 (11.1) 20 (11.1) 20 (11.1) 14 (7.8) 29 (16.1) 110 (12.2)	nycin 4 0 (0.0) 1 (0.6) 1 (0.6) 0 (0.0) 0 (0.0) 2 (0.2)	28 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)	The the s Fish, of W LA); State MA); Univ	ACKNOWLEDGMENTS authors would like to thank the following investigators for kindly providing strains for itudy: Paul D Fey, University of Nebraska Medical Center (Omaha, NE); Douglas University of Colorado Health Science Center (Denver, CO); Ajit Limaye, University ashington (Seattle, WA); George Pankey, Ochsner Clinic Foundation (New Orleans, James Rahal, New York Hospital Queens (New York, NY); Michael Rybak, Wayne a University (Detroit, MI); David Snydman, New England Medical Center (Boston, Lisa L. Steed, Medical University of South Carolina (Charleston, SC); Ken Waites, ersity of Alabama at Birmingham (Birmingham, AL).
Year 2002 2003 2004 2005 2006 Total	No. of strains 180 180 180 180 900 3. Overa dical cer	1 73 (40.1) 88 (48.9) 62 (34.4) 79 (43.9) 375 (41.7) 375 (41.7)	2 33 (18.3) (23 (12.8) ((20.1) 37 (20.1) 167 (18.6) elence of Site no.	No. of str ancomycla 4 8 21 1: 11.6) (6. 20 1: 11.1) (6. 15 1 (8.3) (7. 13 1: (7.2) (6. 16 8 (8.9) (4. 85 5; (9.4) (6. 5 4) 5 5; (9.4) (6. 5 5; (6. 5 5; (7. 5 5; (7. 6; (7.)) (7. 6; (7.)) (7. 6; (7.)) (7.) (ains (%) v 16 2 6 7) (3.3) 1 8 1) (4.4) 3 2 (2.8) 2 6 3 2 (2.8) 10 10 10 10 10 10 10 10 10 10	with MBC/ 232 35 (19.4) 45 (25.0) 21 (11.7) 50 (27.8) 30 (16.7) 181 (20.1) lerant state	MIC ratio of 1 153 (85.0) 159 (88.3) 166 (92.2) 151 (83.9) 788 (87.6) rains (M	5f: Dapton 2 (15.0) 20 (11.1) 20 (1)	nycin 4 0 (0.0) 1 (0.6) 1 (0.6) 0 (0.0) 0 (0.0) 2 (0.2) 2 (0.2)	28 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 9(0.0)	The the s Fish, of W LA); State MA); Univ	ACKNOWLEDGMENTS authors would like to thank the following investigators for kindly providing strains for kudy: Paul D Fey, University of Nebraska Medical Center (Omaha, NE); Douglas University of Colorado Health Science Center (Denver, CO); Ajit Limaye, University ashington (Seattle, WA); George Pankey, Ochsner Clinic Foundation (New Orleans, James Rahal, New York Hospital Queens (New York, NY); Michael Rybak, Wayne a University (Detroit, MI); David Snydman, New England Medical Center (Boston, Lisa L. Steed, Medical University of South Carolina (Charleston, SC); Ken Waites, ersity of Alabama at Birmingham (Birmingham, AL). EREFERENCES Clinical and Laboratory Standards Institute (2006). M7-A7, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard - seventh edition. Wayne, PA: CLSI. Clinical and Laboratory Standards Institute (2009). M10-S18, Performance standards for antimicrobia susceptibility testing, 18th informational supplement. Wayne, PA: CLSI.
Year 2002 2003 2004 2005 2006 Total	No. of strains 180 180 180 180 180 900 900 900	1 73 (40.1) 73 (40.1) 73 (40.9) 82 (48.9) 62 (34.4) 79 (43.9) 375 (41.7) 83 84 84 84 84 84 85 86 86 86 86 86 86 86 86 86 86	V 2 33 3(112.8) ((113.3) ((113.3) ((113.3) ((113.3) ((113.3) ((113.3) ((113.3) ((113.3) ((113.3) (113.3) (113.3) ((113.3) (113.3) ((113.3)))))))))))))))))))))))))))))))))	No. of strike ancomycli 4 21 1: 11.16 (6. 20 1: 111.11 (6. 20 1: 111.11 (6. 20 1: 111.11 (6. 20 1: 111.11 (6. 20 1: 111.11 (6. 20 1: 115.11 (7. 20 6. 20 1: 116 2: 116 2:	ains (%) v 16 2 3 3 10 (4.4) 10 (4.4) 10 (5 3 5 (2.8) 2 (2.8) 10 (4.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (3.3) 10 (5 (5) (5) (5) (5) (5) (5) (5)	With MBC/ 35 (19.4) 45 (25.0) 21 (11.7) 50 (27.8) 30 (16.7) 181 (27.8) 30 (16.7) 181 (20.1)	MIC ratio (1 153 (85.0) 159 (88.3) 169 (88.3) 168 (92.2) 168 (92.2) 788 (83.9) 788 (87.6) (87.6) (8	of: Daptor 2 (15.0) 20 (11.1) 20 (11.1) 20 (11.1) 20 (11.1) 20 (11.1) 20 (11.1) 20 (11.1) 10 (12.2) 20 (11.1) 20 (1)	aycin 4 0 (0.0) 1 (0.6) 1 (0.6) 1 (0.6) 0 (0.0) 0 (0.0) 2 (0.2) 2 (0.2)	28 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 9(ml)	The the s Fish, of W LA); State MA); Univ	ACKNOWLEDGMENTS authors would like to thank the following investigators for kindly providing strains for tudy: Paul D Fey, University of Nebraska Medical Center (Omaha, NE); Douglas University of Colorado Health Science Center (Denver, CO); Ajit Limaye, University ashington (Seattle, WA); George Pankey, Ochsner Clinic Foundation (New Orleans James Rahal, New York Hospital Queens (New York, NY); Michael Rybak, Wayne a University (Detroit, MI); David Snydman, New England Medical Center (Boston, Lisa L. Steed, Medical University of South Carolina (Charleston, SC); Ken Waites, ersity of Alabama at Birmingham (Birmingham, AL). Clinical and Laboratory Standards Institute (2006); MT-A7. Methods for dilution antimicrobial susceptibilit tests for bacteria that grow aerobically; approved standard - seventh edition. Wayne, PA: CLSI. Clinical and Laboratory Standards Institute (2006); MT-A7. Methods for dilution antimicrobial susceptibilit tests for bacteria that grow aerobically; approved standard - seventh edition. Wayne, PA: CLSI. Clinical and Laboratory Standards Institute (2006). MT-A7. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - seventh edition. Wayne, PA: CLSI. Fizglibon MM, Rosseny AS. Oconnell B (2007). Investigation of reduced susceptibility of ycopoptide arong methicallin-resistant <i>Staphylococcus aureus</i> isolates from patients in Ireland and evaluation of agas sessengene methicallin-resistant <i>Staphylococcus aureus</i> (INISA) from the Detroit Metropolitan area over 22-year period (1986-2007). Antimicrob Agents Chemother 46: 2950-2954

Site no.	Tolerant strains (%)
1	10.0
2	23.0
3.	20.0
4.	13.0
5.	20.0
6.	10.0
7.	43.0
8.	13.0
9.	29.0