

ABSTRACT

Background: CEM-101 (CEM), a novel macrolide-ketolide, has potent activity against bacterial pathogens susceptible (S) or resistant (R) to other MLS_B-ketolide agents. Projected for use in therapy of respiratory tract infections (RTI), CEM was tested against contemporary RTI

Methods: A worldwide sample of organisms included S. pneumoniae (SPN; 168, 59.3% erythromycin [ERY]-R and 18 multidrug-resistant [MDR] -19A strains), *M. catarrhalis* (MCAT; 21, 11 ß-lactamase[+]), H. influenzae (HI; 100, 48 ß-lactamase[+]), H. parainfluenzae and H. haemolyticus (12) and L. pneumophila (LPN; 30). All S tests were by reference CLSI methods (M7-A7, M100-S18) and breakpoints per CLSI (2008) for comparison agents such as azithromycin (AZ), clarithromycin (CLA), ERY, telithromycin (TEL), clindamycin (CC), Synercid[®] (SYN), levofloxacin (LEV), linezolid, and rifampin (RIF).

Results: SPN were very S to CEM (MIC₉₀, 0.25 µg/ml; highest MIC at 0.5 µg/ml) and CEM was 2- and 8-fold more potent than TEL and CC, respectively. MDR-19A replacement strains were also CEM-S (MIC₉₀, 0.5 µg/ml). LPN were most S to CEM with all MIC values at ≤0.015 µg/ml (TEL MIC₉₀, 0.03 µg/ml). *Haemophilus* RTI pathogens were less CEM-S (MIC₉₀, CEM/TEL): HI (2/4 µg/ml) and others (2/4 µg/ml) with no variations for ß-lactamase (+) strains. MCAT CEM-101 MICs were all at ≤0.5 µg/ml, equal to TEL.

	CEM MIC (µg/ml)			TEL MIC (µg/ml)		
Organism (no.)	50%	90%	Range	50%	90%	Range
SPN (150)	0.015	0.25	≤0.008-0.5	0.03	0.5	≤0.008-1
MDR-19A (18)	0.25	0.5	0.06-0.5	0.5	1	0.12-1
MCAT (21)	0.12	0.12	≤0.008-0.5	0.12	0.25	≤0.015-0.5
HI (100)	1	2	0.12-4	2	4	0.25-16
Other Haemophilus (12)	2	2	0.12-2	2	4	0.25-8
LPN (30)	≤0.015	≤0.015	≤0.015	0.03 ^a	0.03 ^a	0.03-0.06 ^a

a. RIF results, not TEL.

Conclusions: CEM exhibited the widest spectrum/activity against RTI pathogens among the tested MLS_B-ketolide agents (AZ, CLA, ERY, TEL, CC, SYN) and comparable to LEV. All CEM MIC values were at ≤ 0.5 and $\leq 4 \mu g/ml$ for SPN or LPN and HI, respectively; expanded studies should be considered.

INTRODUCTION

CEM-101 (formerly OP-1068) is a novel macrolide-ketolide class agent selected as a candidate for oral therapy of community-acquired respiratory tract (CA-RTI) and uncomplicated skin and skin structure infections (uSSSI). Screening in vitro studies indicated a potency comparable or superior to telithromycin, erythromycin, azithromycin and clarithromycin, as well as activity against Gram-positive isolates having documented resistances to macrolides or lincosamides. CEM-101 activity is generally focused against Gram-positive pathogens, but also possesses measurable potencies versus fastidious Gram-negative species (Haemophilus, Moraxella), some Enterobacteriaceae (Salmonella, Shigella) and pathogens causing various sexual transmitted diseases (STD).

In this presentation, we report CEM-101 activity measured by reference Clinical and Laboratory Standards Institute (CLSI) methods when testing organisms associated with CA-RTI (streptococci, Haemophilus spp., Moraxella catarrhalis, Legionella pneumophila), emerging resistant subsets (serogroup 19A S. pneumoniae) and various patterns of MLS_B-ketolide resistance among the tested streptococci.

MATERIALS AND METHODS

Organism collection: All organisms tested were collected from patients in the USA and European medical centers from 2005 to present. Sources of recovered isolates included bloodstream, skin and soft tissue and respiratory tract infections. Unusual/rare organism species and phenotypes required use of strains isolated prior to 2005 or from other geographic areas. See list of tested strains below:

- Streptococci (319)
- S. pneumoniae (150 wild type)
- S. pneumoniae (18 serogroup 19A, USA only)
- ß-haemolytic species (100, five groups)
- viridans group (51, five species)
- *Haemophilus* species (111)
- *H. influenzae* (100, 48 ß-lactamase producers)
- H. parainfluenzae (11) • *M. catarrhalis* (21, 11 ß-lactamase producers)
- L. pneumophila (30)

Susceptibility testing: Ninety-six well frozen-form assay panels were produced by JMI Laboratories and consisted of three media types: cation-adjusted Mueller-Hinton broth. cationadjusted Mueller-Hinton broth with 2.5-5% lysed horse blood (for testing streptococci) and

Haemophilus Test Medium (HTM). CLSI broth microdilution and agar dilution methods per M7-A7 [2006] were used. Quality control (QC) ranges and interpretive criteria for comparator compounds were those published in CLSI M100-S18 [2008]. Tested QC strains included S. aureus ATCC 29213, E. faecalis ATCC 29212, S. pneumoniae ATCC 49619 and H. influenzae ATCC 49247 and 49766. All QC results were within published limits.

Agar dilution methods were used for *L. pneumophila* tested on BCYE agar. Comparison agents were tested by Etest, also on BCYE media.

A wide variety of comparison agents were utilized including: amoxicillin/clavulanate (amox/ clav), azithromycin, cefdinir, clarithromycin, clindamycin, erythromycin, levofloxacin, linezolid, quinupristin/dalfopristin (Q/D), telithromycin and trimethoprim/sulfamethoxazole (TMP/SMX) all assessed by broth microdilution; and ciprofloxacin, tetracycline, ampicillin and rifampin were additionally tested on agar.

- ß-haemolytic streptococci were also susceptible to CEM-101 (MIC₉₀, 0.12 µg/ml (Table 1).
- CEM-101, like telithromycin, was active against all macrolide- and
- Table 1).
- Among the MLS_B agents, the rank order of potency (MIC₉₀ in μ g/ ml) against *M. catarrhalis* was: azithromycin (0.06) > CEM-101 = effect on the CEM-101 MIC₉₀ values (0.12 μ g/ml).
- CEM-101 (MIC₉₀, \leq 0.015 µg/ml) was the most active agent tested against *Legionella* spp. (Table 1), superior to other macrolides, levofloxacin and rifampin. Note that the charcoal content of the test media can interfere with the reference MIC testing of this species.
- Where on-scale MIC results were available, CEM-101 (MIC₉₀, 0.015 µg/ml) was two- and eight-fold more active than clarithromycin or telithromycin and azithromycin, respectively, against streptococci to erythromycin, CEM-101 had an elevated MIC (MIC₉₀, 0.25 µg/ susceptible to telithromycin, but all were inhibited by CEM-101 at ≤0.5 µg/ml.
- Eighteen serogroup 19A strains exhibited high levels of nonpotency two-fold greater than telithromycin.
- Table 4 shows excellent CEM-101 potency against streptococci (all pathogens (MICs, ≤0.008-4 µg/ml).

Antimicrobial Characterization of CEM-101: Activity Against 331 Respiratory Tract Pathogens Including Multidrug-Resistant Pneumococcal Serogroup 19A Isolates RN JONES, DJ BIEDENBACH, PR RHOMBERG, TR FRITSCHE, HS SADER JMI Laboratories, North Liberty, Iowa

RESULTS

• S. pneumoniae were very susceptible to CEM-101 with a MIC₉₀ of only 0.25 µg/ml. This documented potency (Table 1) was two-fold greater than telithromycin and eight-fold superior to linezolid (MIC₉₀, 2 μ g/ml).

0.03 μ g/ml) with this new agent showing a four-fold advantage (MIC₉₀, 0.12 µg/ml; 100.0% susceptibility) over telithromycin. Five groups of ß-haemolytic strains were tested and all strains showed a monomodal MIC (0.015 µg/ml) distribution and the highest CEM-101 MIC was only

clindamycin-resistant viridans group streptococci (five species groups; 51 strains). All CEM-101 MIC values were at ≤0.12 µg/ml, four-fold more potent than telithromycin and 64-fold more active than erythromycin.

• All CEM-101 MIC results for *Haemophilus* spp. had a narrow range of only 0.5-4 µg/ml (exception two strains of 0.12 µg/ml that did not exhibit an efflux pump). The overall MIC₉₀ for strains in this genus was 2 μ g/ ml, equal to azithromycin and two-fold more active than telithromycin. The various species (*H. influenzae*, *H. parainfluenzae*) and ß-lactamase production did not significantly alter CEM-101 activity (MIC₉₀, 2 µg/ml;

clarithromycin (0.12) > erythromycin = telithromycin (0.25) > Q/D (0.5) > clindamycin (2; see Table 1). The ß-lactamase activity had no significant

susceptible to erythromycin (Table 2). For streptococci non-susceptible ml); however, CEM-101 was at least two-fold more active than either telithromycin or clindamycin. When tested against erythromycin- and clindamycin-non-susceptible streptococci, all but one strain remained

susceptibility to: macrolides (100.0%), clindamycin (83.3%), penicillin (83.3%), amox/clav (88.9%), ceftriaxone (33.3%), tetracyclines (83.3%) and TMP/SMX (100.0%). Few therapeutic options remain with only telithromycin (MIC₉₀, 1 μg/ml; 100.0% susceptible), Q/D (MIC₉₀, 1 μg/ ml; 100.0% susceptible) and fluoroquinolones (MIC₉₀, 1 μ g/ml; 100.0% susceptible) having usable potencies (Table 3). CEM-101 showed a

MICs, ≤0.5 µg/mI) and moderate activity against Gram-negative CA-RTI

		$MIC (\mu g/ml)$			% by category ^a	streptococci having various MLS _B resistance patterns (three	CONCLUSIONS		
Organism (no. tested)/ resistance subset	Antimicrobial Agents	50%	90%	Range	Susceptible/Resistant	groups, 300 strains*).	• CENT 101 a noval macrolida katalida, avhibitad		
S. pneumoniae (150)	CEM-101	0.015	0.25	≤0.008-0.5	_/_	MIC (µg/ml)	• CEIVI-TUT, à novel macronde-kelonde, exhibited		
	Telithromycin	0.03	0.5	≤0.008-1	100.0 / 0.0	MLS _p -ketolide Antimicrobial	potent activity against streptococci (MIC ₅₀ , 0.015 μ g/		
	Erythromycin	>4	>4	≤0.12->4	40.7 / 59.3	resistance pattern (no. tested) ^a agent 50% 90% Range	ml) and various other Gram nesitive eccei including		
	Clarithromycin	>16	>16	≤0.008->16	40.7 / 59.3		mil, and various other Gram-positive cocci including		
	Azithromycin	>16	>16	0.03->16	40.7 / 59.3	ER-S (164) [°] CEM-101 ≤0.008 0.015 ≤0.008-0.03	strains resistant to erythromycin and clindamycin		
	Clindamycin	0.25	>4	≤0.12->4	50.0 / 50.0	Telithromycin 0.03 0.008-0.06	(Table 1.4) CENT 101 abound complete activity		
	Q/D Americales (0.5	1	0.25-2	99.3 / 0.0	Clarithromycin 0.03 0.03 ≤0.008-0.25	(Table 1-4). CENT-TOT showed complete activity		
	Amox/clav Cofdinir		>8	≤0.25->8 <0.12 >4		Azithromvcin 0.06 0.12 ≤0.008-0.5	against MDR serogroup 19A pneumococci (16 of 18		
		4	-4	≥0.12-24 0.5 >1	39.37 39.3	Clindamycin <0.12 <0.12 <0.12-0.5	MIC values at 0.25 ar 0.5 ur/ml) and was two fold		
		т Д	۱ >4	<0.25->4	38.0 / 55.3		iving values at 0.25 or 0.5 µg/mi) and was two-iold		
	Linezolid		2	0.5-2	100 0 / -	Q/D 0.5 0.5 ≤0.12-2	more active than telithromycin and Q/D.		
			2	10 000 0 10		Amox/clav ≤0.25 2 ≤0.25->4			
Is-haemolytic streptococci (100)	CEM-101 Talith region (ality)	0.015	0.03	≤0.0080.12	-/-	Levofloxacin 1 0.25->4	 CEM-101 also inhibited Gram-negative species 		
	Frythromycin	0.03	0.12	≤0.008-2 <0.12 >4	-/-	Linezolid 1 2 0.25-2			
	Erythromycin	≤0.1Z	>4	≤0.12->4 <0.009 >16	74.0 / 25.0		associated with CA-RTI (<i>H. influenzae</i> [MIC ₉₀ , 2 μ g/		
		0.03	>16	0.015->16	73.0723.0	ER-NS, CC-and TEL-S (48) ³ CEM-101 0.03 $0.12 \leq 0.008-0.25$	ml] $I equipmenta son [MIC < 0.015 uq/ml] and M$		
	Clindamycin	<0.12	>4	<0.012->4	85.0 / 13.0	Ielithromycin 0.12 0.5 0.03-1	(11), Legionena Spp. [10090, -0.010 µg/m], and <i>m</i> .		
	Ω/D	0.5	0.5	0 25-1	100 0 / 0 0	Clindamycin ≤0.12 0.25 ≤0.12-0.25	catarrhalis [MIC ₉₀ , 0.12 μ g/ml]).		
	Levofloxacin	0.5	1	0.25->4	98.0 / 2.0	Q/D 0.5 1 0.25-2			
	Linezolid	1	1	0.5-2	100.0 / -	Amox/clav ≤0.25 2 ≤0.25->4	 CEM-101 appears to be an attractive candidate for 		
		-0.000				Levofloxacin 1 2 0.25->4	treatment of CA DTL offering noteney and an atmum		
vinuans gr. streptococci (51)		≤U.UU8	0.06	≤0.008-0.12 <0.000-0.5	-/-	Linezolid 1 2 0.5-2	reament of CA-KII, onering potency and spectrum		
		0.015	0.25	≤0.008-0.5			advantages over telithromycin and clindamycin		
	Erythromycin	≤0.1Z	4	≤0.12->4 <0.000 0	56.9/43.1	ER-and CC-NS, TEL-S (88)" CEM-101 0.06 $0.25 \leq 0.008-0.5$	aavantagee ever tenthernyenr and ennaarryenr.		
		0.03	Ζ Λ	≥0.000-0 <0.002.16	56.0 / 30.3	Telithromycin 0.12 1 0.03-1			
	Clindamycin	<0.12	4 <0.12	≤0.000-10 <0.12 >1	080/20	Q/D 0.5 1 0.25-2	SELECTED REFERENCES		
		<u>≤0.12</u> 0.5	<u>≤</u> 0.1∠ 1	≤0.12-24 <0.12-2	961/00	Amox/clav 2 >8 ≤0.25->8			
	Levofloxacin	1	2	0 25->4	922/78	Levofloxacin 1 0.25-2	1. Clinical and Laboratory Standards Institute (2006). M7-A7, Methods for dilution antimicrobial		
	Linezolid	1	2	0.25-2	100 0 / -	Linezolid 1 0.5-2	susceptibility tests for bacteria that grow aerobically; approved standard - seventh edition. Wayne,		
	LINCZONG	•		0.20 2		a. ER = erythromycin, CC = clindamycin and TEL = telithromycin, S = susceptible and NS = non-susceptible	PA: CLSI.		
H. influenzae			0			e.g. includes intermediate and resistant strains.	2. Clinical and Laboratory Standards Institute (2008). M100-S18, Performance standards for		
ß -lactamase-positive (48)	CEM-101	1	2	0.12-4	-/-	b. Includes: <i>Streptococcus anginosus</i> (9 strains), <i>S. constellatus</i> (8 strains), <i>S. intermedius</i> (7 strains), <i>S.</i>	antimicrobial susceptibility testing, 18th informational supplement. Wayne, PA: CLSI.		
	Telithromycin	2	4	0.25-8	97.9 / 0.0	<i>mitis</i> (2 strains), <i>S. oralis</i> (3 strains), <i>S. pneumoniae</i> (61 strains), Group A (29 strains), Group B (17 strains), Croup E (6 strains) and Group G Streptococcus (11 strains)	3. Farrell DJ, Klugman KP, Pichichero M (2007). Increased antimicrobial resistance among		
		8	8	0.25-16	91.7 / 0.0	c. Includes: Streptococcus anginosus (2 strains). S. constellatus (2 strains). S. intermedius (3 strains). S. mitis	nonvaccine serotypes of Streptococcus pneumoniae in the pediatric population after the introduction		
	Azithromycin	1	2	0.25-4	100.07-	(7 strains), <i>S. oralis</i> (7 strains), <i>S. pneumoniae</i> (14 strains), Group A (1 strain), Group B (7 strains), and	of 7-valent pneumococcal vaccine in the United States. <i>Pediatr Infect Dis</i> J 26: 123-128.		
	Amox/clav			0.5-4		Group G Streptococcus (5 strains).	4. Hanage WP, Huang SS, Lipsitch M, Bishop CJ, Godoy D, Pelton SI, Goldstein R, Huot H, Einkeletein IA (2007). Diversity and entiblicitie registerion emong nervolution correty nee of		
		0.25	0.5	≤0.12-1 <0.12,0.25	100.0 / -	d. Includes: Streptococcus constellatus (1 strain), <i>S. pneumoniae</i> (75 strains), Group B (7 strains), Group C (2 strains), and Group E. Streptococcus (3 strains)	Streptococcus preumoniae carriage isolates in the post-heptavalent conjugate vaccine era. Unfect		
		≤0.1Z	≤0.1Z	≤0.12-0.25 <0.25 >4	100.07 -	*Note: One strain (group C streptococcus) was NS to ER, CC and TEL, but had a CEM-101 MIC at 0.06 µg/ml.	Dis 195: 347-352.		
		≤0.25	~4	≤0.23-24	00.0/31.3	This is an important emerging pattern, especially in Europe.	5. Jacobs MR. Koornhof HJ. Robins-Browne RM. Stevenson CM. Vermaak ZA. Freiman I. Miller		
ß-lactamase-negative (52)	CEM-101	1	2	0.5-4	_/_		GB, Witcomb MA, Isaacson M, Ward JI, Austrian R (1978). Emergence of multiply resistant		
	Telithromycin	2	4	1-16	96.2 / 1.9		pneumococci. N Engl J Med 299: 735-740.		
	Clarithromycin	8	8	4-16	90.4 / 0.0	Table 2 Activity of CEM 101 and 12 comparator equate test erainet	6. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, Thomas AR, Harrison LH,		
	Azithromycin	2	2	0.5-4	100.0 / -	Table 5. Activity of CEW-101 and 12 comparator agents test against	Bennett NM, Farley MM, Facklam RR, Jorgensen JH, Besser J, Zell ER, Schuchat A, Whitney		
	Amox/clav	0.5	1	≤0.25-4	100.0 / 0.0	serogroup 19A <i>S. pneumoniae</i> (18 strains).	CG (2006). Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant		
	Cefdinir	0.25	0.5	≤0.12-2	96.27-	Antimicrobial agentMIC50MIC90Range% susceptible/resistanta	Streptococcus pneumoniae. N Engl J Med 354: 1455-1463.		
		≤0.12 <0.05	≤0.12	≤0.12-0.25	100.07-		7. Pai R, Moore MR, Pillshvill I, Gertz RE, Whitney CG, Beall B (2005). Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. Unfect Dis		
	TMP/SMX	≤0.25	>4	≤0.25->4	80.8 / 13.5	CEM-101 0.25 0.5 0.06-0.5 -/-	192. 1988-1995		
H. parainfluenzae (11)	CEM-101	2	2	1-2	-/-	Telithromycin 0.5 1 0.12-1 100.0 / 0.0	8 Pelton SI Huot H Finkelstein JA Bishop CJ Hsu KK Kellenberg J Huang SS Goldstein R		
	Telithromycin	4	4	2-8	90.9 / 0.0	Erythromycin >32 >32 8->32 0.0 / 100.0	Hanage WP (2007). Emergence of 19A as virulent and multidrug resistant <i>Pneumococcus</i> in		
	Clarithromycin	8	16	2-16	81.8 / 0.0	Azithromycin >16 >16 8->16 0.0 / 100.0	Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine.		
	Azithromycin	1	2	0.5-2	100.0 / -	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	Pediatr Infect Dis J 26: 468-472.		
	Amox/clav	0.5	0.5	≤0.25-1	100.0 / 0.0		9. Pelton SI, Loughlin AM, Marchant CD (2004). Seven valent pneumococcal conjugate vaccine		
	Cefdinir	≤0.12	0.25	≤0.12-1	100.0 / -	Clindamycin >16 >16 0.06->16 16.7 / 83.3	immunization in two Boston communities: Changes in serotypes and antimicrobial susceptibility		
	Levofloxacin	≤0.12	≤0.12	≤0.12	100.0 / -	Q/D ≤0.5 1 ≤0.5-1 100.0 / 0.0	among Streptococcus pneumoniae isolates. Pediatr Infect Dis J 23: 1015-1022.		
	IMP/SMX	≤0.25	≤0.25	≤0.25-2	90.9 / 0.0	Penicillin 4 >4 2->4 16.7 / 16.7	10. Pichichero ME, Casey JR (2007). Emergence of a multiresistant serotype 19A pneumococcal strain		
<i>M. catarrhalis</i> (21) ^d	CEM-101	0.12	0.12	≤0.008-0.5	_/_	Amox/clav 8 >8 2->8 11.1 / 88.9	not included in the 7-valent conjugate vaccine as an otopathogen in children. JAMA 298: 1772-1778.		
	Telithromycin	0.12	0.25	0.015-0.5	_/_	Ceftriaxone 1 4 1-8 $667/111$	The Pletz M, McGee L, Jorgensen J, Beall B, Facklam R, Whitney C, Klugman K (2004).		
	Erythromycin	0.25	0.25	≤0.12-0.5	_/_		spread and the impact of conjugate pneumococcal vaccine Antimicrob Agents Chemother 48		
	Clarithromycin	0.12	0.12	0.03-0.5	_/_	Levotioxacin 1 1 1-2 100.0 / 0.0	3491-3497.		
	Azithromycin	0.03	0.06	0.03-0.5	_/_	Tetracycline >16 >16 0.25->16 16.7 / 83.3	12. Whitney CG, Pilishvili T, Farley MM, Schaffner W, Craig AS, Lynfield R, Nyguist AC, Gershman		
	Clindamycin	2	2	0.5->4	_/_	TMP/SMX >4 1->4 0.0 / 94.4	KA, Vazquez M, Bennett NM, Reingold A, Thomas A, Glode MP, Zell ER, Jorgensen JH, Beall B,		
	Q/D	0.5	0.5	≤0.12-4	-/-	a Criteria as published by the CLSI [2008]	Schuchat A (2006). Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive		
	Amox/clav	≤0.25	≤0.25	≤0.25	-/-		pneumococcal disease: A matched case-control study. Lancet 368: 1495-1502.		
	Cefdinir	≤0.12	≤0.12	≤0.12-0.25	-/-				
	Levofloxacin	≤0.12	≤0.12	≤0.12	_/_				
	TMP/SMX	≤0.25	≤0.25	≤0.25	-/-	Table 4. CEM-101 MIC distributions for all tested RTI organisms (398 strained)	ins).		
L. pneumophila (30)	CEM-101 ^e	≤0.015	≤0.015	≤0.015	_/_		Occurropage at MIC (uc/ml)		
	Azithromycin ^f	1	2	0.25-4	_/_				
	Clarithromvcin ^f	0.5	0.5	0.25-1	_/_	Organism (no. tested)/group ≤0.008 0.015 0.03 0.06 0.12	<u>2</u> 0.25 0.5 1 2 4 8 ≥16		
	Levofloxacin ^f	0.25	0.5	0.25-0.5	_/_	S. pneumoniae (150)6225897	33 6 0 0 0 0		
	Rifampin ^f	0.03	0.03	0.03-0.06	_/_	ß-haemolytic streptococci (100) 21 65 4 8 2	0 0 0 0 0 0		
a. Criteria as published by the CLSI [2008]						Viridans group streptococci (15) 27 11 4 7 2			
b. Includes: Group A (30 strains), Group B (31 strains), G	Group C (14 strains), Group F (9 strains), and	I Group G Streptococcus (16 strains	S).			$\frac{1}{1} = \frac{1}{1} = \frac{1}$			
c. Includes: Streptococcus anginosus (11 strains), S. con	nstellatus (11 strains), S. intermedius (10 stra	ins), S. mitis (9 strains), and S. oral	lis (10 strains).			$\frac{1}{1} = \frac{1}{2} = \frac{1}$			
 a. Includes: This-lactamase-positive strains. e. Tested using the agar dilution (BCYF agar) method 						H. Influenzae (100) 0 0 0 1	0 5 48 42 4 0 0		
f. Tested by Etest using manufacturer's recommendation	ns (AB BIODISK) and rounded to nearest lo	g ₂ dilution schedule.				Haemophilus, other (12) 0 0 0 1	0 0 4 7 0 0		

ICAAC/IDSA 2008

JMI Laboratories North Liberty, IA, USA www.jmilabs.com 319.665.3370, fax 319.665.3371 ronald-jones@jmilabs.com