Spectrum and Activity of Ceftaroline Combined with NXL104 Tested Against a Challenge Collection of Pathogens with Well Characterized Resistances H.S. SADER¹, G. WILLIAMS², I. CRITCHLEY², RN JONES¹

F1-1492

Abstract

Background: Ceftaroline (CPT) is a broad-spectrum cephalosporin with activity against Gram-negative and -positive (including MRSA), but limited activity against ESBL- and AmpC-producing strains. NXL104 (NXL) is a novel β -lactamase (β L) inhibitor that inhibits AmpC, ESBL and KPC type enzymes.

Methods: CPT, NXL, various CPT/NXL combinations (fixed 2 and 4 µg/ml and 1:1, 2:1, 4:1 and 8:1 ratios) and comparators were tested for susceptibility (S) by CLSI broth microdilution methods against 178 clinical strains, including Enterobacteriaceae (ENT) producing CTX-M (22 strains), CMY (10), FOX (5), KPC (20), SME (5) and metallo-βL (MβL; 5), *P. aeruginosa* (PSA; 15), *A. baumannii* (ACB; 15), MRSA (50; SSCmec types I-IV), MSSA (10), S. pneumoniae (SPN; 16) and E. faecalis (EF: 5).

Results: The greatest NXL effect was obtained at a fixed of 4 µg/mL concentration. 93% of ENT were inhibited at $\leq 2/4 \mu g/mL$ of CPT/NXL while only 45 and 63% were S to cefepime and imipenem, respectively Among ENT, only M β L-producing strains had a CPT/NXL MIC, >2/4 μ g/mL. CPT/NXL was very active against MRSA (MIC₉₀, 2/4 μ g/mL), MSSA (MIC₉₀, 0.25/4 μ g/mL), SPN (highest MIC, 0.25/4 μ g/mL) and ampicillin-S EF (MIC range, 1/4-4/4 µg/mL). CPT showed only marginal anti-PSA activity, but significant enhanced effect with NXL against wildtype (WT) isolates. CPT/NXL exhibited good activity against WT ACB (MIC range, 0.5/4-4/4 µg/mL), but limited activity against OXA- producing

Organism		No	. of strains	s (cumulati	ve %) inhil	oited at MI	C (µg/mL	of):	
(no. tested)	≤0.12	0.25	0.5	1	2	4	8	16	>16
Enterobacteriaceae	(67)								
CPT/NXL ^a	24 (36)	13 (55)	18 (82)	5 (90)	2 (93)	-	-	-	5 (100)
Cefepime	5 (8)	4 (13)	5 (21)	2 (24)	6 (33)	6 (42)	2 (45)	5 (55)	32 (100)
Imipenem	8 (12)	12 (31)	15 (52)	2 (55)	2 (58)	3 (63)	8 (75)	-	17 (100)
MRSA (50)									
CPT/NXL ^a	-	-	3 (6)	27 (60)	18 (96)	2 (100)	-	-	-
Cefepime	-	-	-	-	-	-	4 (8)	11 (30)	35 (100)
Imipenem	4 (8)	9 (26)	1 (28)	3 (34)	2 (38)	2 (42)	2 (46)	-	27 (100)
S. pneumoniae (16)									
CPT/NXL ^a	14 (88)	2 (100)	-	-	-	-	-	-	-
Cefepime	8 (50)	2 (63)	1 (69)	4 (94)	1 (100)	-	-	-	-
Imipenem	11 (69)	0 (69)	2 (81)	3 (100)	-	-	-	-	-
a NXL at fixed 4 ug/mL									

NXL at fixed 4 μ g/mL.

Conclusions: CPT alone was very active against Gram-positives. CPT/NXL combinations showed significant enhanced potencies compared with CPT alone against ENT strains producing CTX-M, plasmidic AmpC, and KPC βLs.

Introduction

The objective of this study was to evaluate the spectrum of activity and potency of ceftaroline combined with NXL104 when tested against a challenge set of pathogens with well-characterized resistance phenotypes and genotypes, often geographically specific.

Ceftaroline, a broad-spectrum cephalosporin currently in clinical development, demonstrates bactericidal activity against gram-positive organisms including methicillin-resistant *Staphylococcus aureus* (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP), as well as common gram-negative pathogens. Positive results have been reported from phase 2 and phase 3 clinical trials on the efficacy and safety of ceftaroline for the treatment of complicated skin and skin structure infections (cSSSI) and for community-acquired bacterial pneumonia (CABP).

As with other cephalosporins, ceftaroline is less active against extendedspectrum β -lactamase (ESBL)-producing organisms. NXL 104 is a new non- β -lactam inhibitor of β -lactamases currently in clinical development (Figure 1). NXL104 displays a broad-spectrum inhibition profile against both class A and class C enzymes. To enhance the activity of ceftaroline against ESBLs, its utility when combined with NXL104 (Figure 1) was investigated.

Materials and Methods

Susceptibility Testing

MIC values were determined using the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method (CLSI, 2009a). Frozen-form assay panels were produced by JMI Laboratories (North Liberty, Iowa, USA) and consisted of cation-adjusted Mueller-Hinton broth (supplemented with 3-5% lysed horse blood for testing of streptococci). CLSI quality control (QC) ranges and interpretive criteria for comparator compounds were used (CLSI, 2009b); tested QC strains included Escherichia coli ATCC 25922 and ATCC 35218 (inhibitor effect only), Pseudomonas aeruginosa ATCC 27853, S. aureus ATCC 29213, and S. pneumoniae ATCC 49619.

Antimicrobial Agents

Ceftaroline was tested alone (128 – 0.06 μ g/mL) and with various NXL104 combinations (fixed NXL104 concentrations of 2 and 4 µg/mL and ceftaroline:NXL104 ratios of 8:1, 4:1, 2:1, and 1:1). To evaluate the antimicrobial activity of NXL104, this compound was also tested alone $(32 - 1 \mu g/mL)$. The comparator compounds included ceftriaxone, ceftazidime, cefotaxime, cefepime, piperacillin/tazobactam, penicillin, imipenem, meropenem, and ciprofloxacin.

Organism Collection (178 strains)

- β-Lactamase-producing challenge sets of prevalent types (87 strains):
- 1. Enterobacteriaceae producing CTX-M-series (CTX-M-15, -14, -3, and -2; 22 strains, various species)
- 2. Plasmidic AmpC in *Enterobacteriaceae* (15 strains), including CMY-series (CMY-2 and others; 10 strains) and FOX-series (FOX-5 and others; 5 strains)
- 3. Serine carbapenemases in *Enterobacteriaceae* (25 strains), including KPC-series (KPC-2, -3; 20 strains, various species) and SME-series (SME-2; 5 strains)
- 4. Metallo-β-lactamases (MBL) in *Enterobacteriaceae* (5 strains): VIM-1 (1), VIM-2 (1), IMP-1 (1), IMP-11 (1), and IMP-21 (1)
- 5. Other carbapenem resistances expressed in non-*Enterobacteriaceae* (20 strains)
- a. *P. aeruginosa* (SPM-, VIM-, and IMP-series; 5 strains) b. Efflux, overexpression of AmpC and outer membrane protein
- (OMP) alterations in *P. aeruginosa* (5 strains)
- c. Acinetobacter baumannii (OXA-23, -24, and -58; 10 strains)
- B. Wild-type *P. aeruginosa* and *A. baumannii* strains (10 strains)
- C. Gram-positive cocci (81 strains) 1. MRSA strains carrying different SCC*mec* types from various geographic regions each representing predominant national clones (50 total), including: SCCmec type I, II, and III (10 strains each) and SCCmec type IV (20 strains, including a special set [10 strains] of dominant USA clonal types and variants, and different subtypes of SCC*mec* IV)
- 2. Methicillin-susceptible *S. aureus* (MSSA, 10 strains)
- 3. S. pneumoniae (16 strains), including penicillin-resistant (MIC, ≥ 2 μ g/mL; 5 strains), -intermediate (MIC, 0.12 – 1 μ g/mL; 5 strains), and -susceptible (MIC, $\leq 0.06 \,\mu$ g/mL; 6 strains)
- 4. Enterococcus faecalis (5 strains), including 1 ampicillin-resistant strain.

¹JMI Laboratories, North Liberty, IA; ²Cerexa Inc., Oakland, CA (a wholly-owned subsidiary of Forest Laboratories, Inc, New York, NY)

Results

- Against Enterobacteriaceae, the optimal enhanced effect of NXL104 was obtained at a fixed concentration of 4 μ g/mL (MIC₅₀, 0.25/4 μ g/mL and MIC₉₀, $2/4 \mu g/mL$). Among the tests using ratio combinations, the 2:1 and 1:1 ratios showed the greatest activity, with MIC_{50} s of 1/0.5 and $1/1 \mu g/mL$, respectively (Table 1).
- Ceftaroline plus NXL104 at a fixed concentration of 4 µg/mL [CPT/NXL4] was highly active against *Enterobacteriaceae* producing CTX-M (MIC₅₀, 0.12/4 μ g/mL and MIC₉₀, 0.25/4 μ g/mL), plasmidic AmpC (MIC₅₀, 0.12/4 μ g/mL and MIC₉₀, 0.5/4 μ g/mL), KPC (MIC₅₀, 0.5/4 μ g/mL and MIC₉₀, 1/4 μ g/mL) and SME (MIC₅₀ and MIC₉₀, 0.5/4 μ g/mL) β -lactamases, but showed limited activity against MBLproducing strains (Tables 2 and 3).
- In general, CPT/NXL4 was more active than the carbapenems against the β -lactamase-producing *Enterobacteriaceae* (Table 4). Against KPC-producing strains, CPT/NXL4 (MIC₅₀, ≤0.5/4 μg/mL) was >32fold more potent than imipenem (MIC₅₀, >8 μ g/mL) and meropenem (MIC₅₀, >8 μg/mL).
- CPT/NXL4 exhibited good in vitro activity against wild-type strains of Acinetobacter spp. (MIC range, 1/4 - 4/4 µg/mL); however, OXAproducing strains showed elevated MIC results (16/4 - >32/4 μ g/mL; Tables 2 and 3).
- Ceftaroline alone showed limited activity against wild-type P. aeruginosa (MIC, 8 - 32 µg/mL). A 4- to 8-fold reduction in the ceftaroline MIC was observed when combined with NXL104. The highest enhanced effect was obtained for CPT/NXL4 (MIC₅₀, 2/4 µg/mL). CPT/NXL4 was only 2-fold less active than cefepime against wild-type strains of *P. aeruginosa*.
- Ceftaroline alone exhibited limited activity (MIC range, 16 >128 μg/mL) against *P. aeruginosa* strains with efflux, overexpression of AmpC and/or OMP alterations (5 strains), but significant enhanced effects were observed when combined with NXL104 (2- to \geq 16-fold). The greatest reductions of ceftaroline MIC results were obtained with 1:1 ratio test (MIC₅₀, 8/8 μ g/mL).
- Ceftaroline alone and all ceftaroline/NXL104 combinations tested exhibited excellent activity against MRSA and no significant enhanced activity or antagonism were observed with NXL104. Strains with SCC*mec* type IV showed ceftaroline MIC values slightly lower (0.5 - 1) μ g/mL) compared strains with SCC*mec* types I, II, and III (1 - 4 μ g/mL; Table 3). Ceftaroline and all ceftaroline/NXL104 combinations were also very active against MSSA strains, with all MIC values at 0.25 μ g/mL. No enhanced activity was observed with NXL104 (Table 2).
- Ceftaroline was highly active against S. pneumoniae alone and no enhanced activity was observed with NXL104. Against PRSP strains (MIC, $\geq 2 \mu g/mL$), ceftaroline was 8- to 16-fold more potent than ceftriaxone, cefotaxime, cefepime, or imipenem (Tables 3 and 4).
- Ceftaroline and all ceftaroline/NXL104 combinations tested were active against ampicillin-susceptible *E. faecalis* (4 strains; MIC values, 1 - 4 μ g/mL) but showed limited activity against the 1 ampicillinresistant *E. faecalis* strain (MIC value, >128 µg/mL; Table 2). No enhanced activity was observed with the addition of NXL104.

Table 1. MIC Distributions for Ceftaroline, NXL104, and Ceftaroline/NXL104 Combinations

			, i i i i i i i i i i i i i i i i i i i	, i i i i i i i i i i i i i i i i i i i										
Compound ^a /organism	No. of isolates (cumulative %) inhibited at CPT/NXL104 (fixed 4 µg/mL) MIC of :													
(no. tested)	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	> ^b
Enterobacteriaceae ^c (67)														
Ceftaroline	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	2(3.0)	3(7.5)	0(7.5)	4(13.4)	4(19.4)	5(26.9)	3(31.3)	4(37.3)	42(100.0)
CPT/NXL104 fixed 4	2(3.0)	9(16.4)	13(35.8)	13(55.2)	18(82.1)	5(89.6)	2(92.5)	0(92.5)	0(92.5)	0(92.5)	0(92.5)	_d	-	5(100.0)
CPT/NXL104 fixed 2	1(1.5)	8(13.4)	5(20.9)	14(41.8)	16(65.7)	10(80.6)	7(91.0)	1(92.5)	0(92.5)	0(92.5)	0(92.5)	-	-	5(100.0)
CPT/NXL104 8:1	0(0.0)	0(0.0)	0(0.0)	1(1.5)	6(10.5)	13(29.9)	24(65.7)	14(86.6)	4(92.5)	0(92.5)	0(92.5)	-	-	5(100.0)
CPT/NXL104 4:1	0(0.0)	0(0.0)	0(0.0)	2(3.0)	12(20.9)	14(41.8)	19(70.2)	14(91.0)	1(92.5)	0(92.5)	2(95.5)	-	-	3(100.0)
CPT/NXL104 2:1	0(0.0)	0(0.0)	0(0.0)	4(6.0)	18(32.8)	15(55.2)	17(80.6)	8(92.5)	0(92.5)	1(94.0)	4(100.0)	-	-	0(100.0)
CPT/NXL104 1:1	0(0.0)	0(0.0)	1(1.5)	9(14.9)	17(40.3)	18(67.2)	15(89.6)	2(92.5)	1(94.0)	2(97.0)	2(100.0)	-	-	0(100.0)
NXL104	-	-	-	-	-	0(0.0)	0(0.0)	2(3.0)	24(38.8)	23(73.1)	4(79.1)			14(100.0)
Non-fermenters ^e (30)														
Ceftaroline	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	1(3.3)	4(16.7)	2(23.3)	2(30.0)	3(40.0)	0(40.0)	2(46.7)	16(100.0)
CPT/NXL104 fixed 4	0(0.0)	0(0.0)	0(0.0)	0(0.0)	1(3.3)	0(0.0)	4(16.7)	5(33.3)	1(36.7)	4(50.0)	3(60.0)	-	-	12(100.0)
CPT/NXL104 fixed 2	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	6(20.0)	3(30.0)	2(36.7)	2(43.3)	3(53.3)	-	-	14(100.0)
CPT/NXL104 8:1	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	2(6.7)	6(26.7)	3(36.7)	4(50.0)	4(63.3)	-	-	11(100.0)
CPT/NXL104 4:1	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	2(6.7)	7(30.0)	2(36.7)	3(46.7)	9(76.7)	-	-	7(100.0)
CPT/NXL104 2:1	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	3(10.0)	7(33.3)	1(36.7)	7(60.0)	7(83.3)	-	-	5(100.0)
CPT/NXL104 1:1	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	4(13.3)	6(33.3)	6(53.3)	5(70.0)	4(83.3)	-	-	5(100.0)
NXL104	-	-	-	-	-	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	-	-	30(100.0)
a. CPT = ceftaroline; CPT/NXL104 =	= ceftaroline/N	XL104; fixed 4	= NXL104 at fi	xed concentratio	n of 4 μg/mL; fix	ed 2 = NXL104 a	t fixed concentra	ation of 2 μg/mL;	8:1 = ceftaroline	e/NXL104 at 8:1	ratio; 4:1 = cefta	roline/NXL104	at 4:1 ratio; 2	.:1 =
cettaroline/NXL104 at 2:1 ratio; 1 b. MIC value greater than the highe	:1 = cettaroline st concentratio	n tested.	1 ratio.											

... Includes Enterobacteriaceae strains producing CTX-M (22), plasmidic AmpC (15), KPC (20), SME (5), and metallo-β-lactamases (5)

d -= concentration not tested

Table 2. Antimicrobial Activity of Ceftaroline/NXL104 (Fixed 4 µg/mL) Tested Against Various Groups of Organisms with Well-Characterized Mechanisms of Resistance.

				Nc	of isolatos (cun	aulativo %) inhik	vited at coftarali	ino/NIXI 104 (fix	od 4 ug/mL) Ml(C of:			
Organism (no. tostod)		0.00	0.00	0.40						2 01.			
(no. lested)	≤0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	>32
Enterobacteriaceae (67)													
CTX-M producers (22)	_a	-	8(36.4)	7(68.2)	6(95.5)	0(95.5)	1(100.0)	-	-	-	-	-	-
Plasmidic AmpC producers (15)	-	2(13.3)	1(20.0)	6(60.0)	4(86.7)	2(100.0)	-	-	-	-	-	-	-
KPC-producers (20)	-	-	-	-	2(10.0)	12(70.0)	4(90.0)	2(100.0)	-	-	-	-	-
SME-producers (5)					1(20.0)	4(100.0)							
MBL-producers (5)	-	-	-	-	-	-	-	-	-	-	-	-	5(100.0)
Acinetobacter spp. (15)	-	-	-	-	-	1(6.7)	0(6.7)	1(13.3)	3(33.3)	0(33.3)	2(46.7)	2(60.0)	6(100.0)
Wildtype (5)	-	-	-	-	-	1(20.0)	0(20.0)	1(40.0)	3(100.0)	-	-	-	-
OXA-producers (10)	-	-	-	-	-	-	-	-	-	-	2(20.0)	2(40.0)	6(100.0)
P. aeruginosa (15)	-	-	-	-	-	-	-	3(20.0)	2(33.3)	1(40.0)	2(53.3)	1(60.0)	2(100.0)
Wildtype (5)	-	-	-	-	-	-	-	3(60.0)	2(100.0)	-	-	-	-
AmpC/OMP (5)	-	-	-	-	-	-	-	-	-	1(20.0)	2(60.0)	0(60.0)	2(100.0)
MBL (5)	-	-	-	-	-	-	-	-	-	-	-	1(20.0)	4(100.0)
MRSA (50)	-	-	-	-	-	8(16.0)	29(74.0)	12(98.0)	1(100.0)	-	-	-	-
MSSA (10)	-	-	-	-	10(100.0)	-	-	-	-	-	-	-	-
S. pneumoniae (16)	9(56.3)	2(68.8)	0(68.8)	4(93.8)	1(100.0)	-	-	-	-	-	-	-	-
E. faecalis (5)	-	-	-	-	-	-	1(20.0)	2(60.0)	1(80.0)	0(80.0)	0(80.0)	0(80.0)	1(100.0)
a na ana isalata with this MIC value													

 a. - = no one isolate with this MIC value. Abbreviations: MBL = metallo-β-lactamase; OMP = outer membrane protein; MRSA = methicillin(oxacillin)-resistant *Staphylococcus aureus*; MSSA = methicillin(oxacillin)-susceptible *S. aureus*.

Figure 1. NXL104 Chemical Structure.

e. Includes Acinetobacter spp. (15 strains; 5 wild-type and 10 OXA-producers) and *P. aeruginosa* (15 strains; 5 wild-type, 5 AmpC hyperproducer +/- OMP alteration, and 5 metallo-β-lactamase producers.

Table 3. Summary of Ceftaroline/NXL104 (Fixed 4 µg/mL) Activity.

		`					
	CPT/N	XL104 (fixed 4	μg/mL)				
Organism (no. tested)	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range	
Enterobacteriaceae							
CTX-M-producers (22)	0.12	0.25	0.06-1	≤0.12	0.25	≤0.12-2	
Plasmidic Amp C-producers (15)	0.12	0.25	0.03-0.5	0.25	0.5	≤0.12-0.5	
KPC-producers (20)	0.5	1	0.25-2	>8	>8	2->8	
SME-producers (5)	0.5	NA	0.25-0.5	8	NA	1->8	
MBL-producers (5)	>32	NA	>32	>8	NA	≤0.12->8	
P. aeruginosa							
Wildtype (5)	16	NA	8-32	>8	NA	1-2	
Amp C-producers \pm OMP alteration (5)	16	NA	8->32	>8	NA	1->8	
MBL-producers (5)	>32	NA	>32	>8	NA	>8	
A. baumannii							
Wildtype (5)	4	NA	0.5-4	0.5	NA	≤0.12-0.5	
OXA-producers (10)	>32	>32	16->32	>8	>8	>8	
Methicillin-resistant S. aureus							
SCC <i>mec</i> type I (10)	2	2	1-4	>8	>8	>8	
SCCmec type II (10)	1	2	1-2	>8	>8	0.25->8	
SCC <i>mec</i> type III (10)	1	2	1-2	>8	>8	>8	
SCCmec type IV International (10)	1	1	0.5-1	1	4	≤0.12-8	
SCCmectype IV USA (10)	1	1	0.5-1	0.25	2	≤0.12-4	
Methicillin-susceptible S. aureus (10)	0.25	0.25	0.25	≤0.12	≤0.12	≤0.12	
S. pneumoniae							
Penicillin-resistant (5)	0.12	NA	0.12-0.25	1	NA	0.5-1	
Penicillin-intermediate (5)	≤0.015	NA	≤0.015-0.03	≤0.12	NA	≤0.12	
Penicillin-susceptible (6)	≤0.015	NA	≤0.015	≤0.12	NA	≤0.12	
E. faecalis (5)	2	NA	1->32	2	NA	1->8	
Abbreviations: MBL = metallo-β-lactamase; NA = not applicable; OMP = outer membrane protein; SCC <i>mec</i> = staphylococcal cassette chromosome.							

OSO3Na

ICAAC 2009

JMI Laboratories North Liberty, IA, USA www.jmilabs.com 319.665.3370, 319.665.3371 helio-sader@jmilabs.com

Table 4. In Vitro Activity of Ceftaroline/NXL104 (Fixed 4 µg/mL) and Selected Antimicrobial Agents Tested Against Enterobacteriaceae^a (67 Strains).

Antimicrobial agent	MIC ₅₀	MIC ₉₀	Range	% Susceptible/ Resistant ^b
CPT/NXL4 ^c	0.25	2	0.03->32	-/-
Ceftriaxone	>32	>32	≤8->32	13.4/74.6
Ceftazidime	>32	>32	≤16->32	0.0/74.6
Cefotaxime	>32	>32	0.12->32	13.4/71.6
Cefepime	1613	>16	≤0.012->32	44.8/47.8
Imipenem	≤0.5	>8	≤0.5->8	62.7/25.4
Meropenem	≤0.12	>8	≤0.12->8	64.2/28.4
Piperacillin/tazobactam	64	>64	≤8->64	40.3/46.3
Ciprofloxacin	>2	>2	≤0.25->2	37.3/58.2

a. Includes Enterobacteriaceae strains producing CTX-M (22), plasmidic AmpC (15), KPC (20), SME (5) and metallo-βlactamases (5).

b. Criteria as published by the CLSI (2009)

CPT/NXL4 = ceftaroline/NXL104 at fixed concentration of 4 μ g/mL.

Conclusions

- The ceftaroline/NXL104 combinations tested showed significant activity against Enterobacteriaceae strains producing the prevalent CTX-M, plasmid AmpC, and KPC β -lactamases. The most optimal NXL104 enhanced effect was observed at a fixed concentration of 4 µg/mL.
- Although ceftaroline alone showed only marginal activity against *P*. aeruginosa, significant enhanced effect was observed when ceftaroline was combined with NXL104 against this organism.
- Ceftaroline alone was very active against S. aureus (including MRSA), S. pneumoniae (including penicillin-resistant strains), and ampicillin-susceptible *E. faecalis*, and as expected, NXL104 did not show enhanced activity when combined with ceftaroline against these organisms. No antagonism was observed in tests against these species.
- The results of this investigation demonstrate that ceftaroline/NXL104 is a potential option for the treatment of infections caused by multidrug-resistant Enterobacteriaceae, including KPC-producing strains, as well as gram-positive organisms, including MRSA and PRSP.

References

- I. Clinical and Laboratory Standards Institute (2009). M07-A8. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - eighth edition. Wayne, PA:
- . Clinical and Laboratory Standards Institute (2009). M100-S19. Performance standards for antimicrobial susceptibility testing. 19th informational supplement. Wayne, PA: CLSI.
- 3. Endimiani A, Choudhary, Y Bonomo RA (2009). In vitro activity of NXL104 in combination with betalactams against Klebsiella pneumoniae isolates producing KPC carbapenemases. Antimicrob Agents Chemother 53: 3599-3601.
- 4. Lorian V (1996). Antibiotics in laboratory medicine. Baltimore, Williams and Wilkins. 5. Moody J, Knapp C (2004). Time-kill assay for determining synergy. *Clinical Microbiology Procedures*
- Handbook H. D. Isenberg. Washington, DC, ASM Press: 5.10.31-16 6. National Committee for Clinical Laboratory Standards (1999). M21-A3. Methodology for the serum
- bactericidal test; approved guideline. Wayne, PA: NCCLS. 7. National Committee for Clinical Laboratory Standards (2001). M23-A2. Development of in vitro
- susceptibility testing criteria and quality controls paramaters, 2nd edition. Wayne, PA: NCCLS. 3. National Committee for Clinical Laboratory Standards (1999). M 26-A. Methods for determining bactericidal activity of antibacterial agents; approved guideline. Wayne, PA: NCCLS.
- 9. Stachyra T, Levasseur P, Pechereau MC, Girard AM, Claudon M, Miossec C, Black MT (2009). In vitro activity of the β -lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 64: 326-329.

