Bactericidal Activity of Ceftaroline Combined with NXL104 Against Critical Targeted Organisms Possessing Various Resistance Mechanisms

F1-1493

Abstract

Background: Ceftaroline (CPT), a broad-spectrum cephalosporin with gram-positive activity (including anti-MRSA), was tested in combination with NXL104 (NXL), a potent inhibitor of AmpC, ESBL and KPC β -lactamases (β L) against a selected group of characterized *Enterobacteriaceae* (ENT).

Methods: 6 β L-producing ENT (CMY-2, derepressed AmpC, CTX-M-15, KPC-2 and -3, and a KPC-cured with SHV-27) and 1 wildtype (WT) strain were tested. MIC and MBC were assessed according CLSI guidelines in Mueller-Hinton broth <u>+</u>10% human serum (HS). Time kill analysis (TK) used CPT, CPT/NXL combinations (fixed 4 µg/mL [CPT/NXL4] and 2:1 ratio) and NXL alone at 1X, 2X, 4X and 8X the MIC. Expression of β L genes was determined by quantitative real-time PCR. Plasmid curing was performed by culturing isolate with DNA intercalating compounds.

Results: CPT and NXL MBC results were generally elevated with MBC/MIC ratios of 2 to 32 among β L-producing strains; while CPT/NXL4 had low MIC values and MBC/MIC ratios at 1 or 2 (Table). 10% HS did not adversely influence CPT or CPT/NXL MIC or MBC values. β L-producing ENT had CPT/NXL4 MIC values at $\leq 1/4 \mu$ g/mL and MBC/MIC of 1 or 2 (1 strain). NXL showed direct antimicrobial activity (MIC, 8-16 μ g/mL) against WT and 4 of 6 β L-producing strains. TK detected rapid bactericidal action of CPT/NXL combinations at $\geq 2X$ MIC, with some strains having highest enzyme expression showing regrowth at 4-12 hours at 1X MIC. KPC-cured strain was killed rapidly by CPT at $\geq 2X$ MIC.

	Resistance	CPT		CPT/NXL (fixed 4)		CPT/NXL (2:1)		NXL104	
Species	Mechanism	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
E. coli	Wild type	0.12	0.12	0.06/4	0.06/4	0.12/0.06	0.12/0.06	8	32
E. coli	CMY-2	256	>2048	0.25/4	0.5/4	2/1	2/1	8	16
E. cloacae	AmpC	1024	>2048	1/4	1/4	4/2	4/2	16	128
K. pneumoniae	CTX-M-15	2048	>2048	0.12/4	0.12/4	1/0.5	1/0.5	16	>128
K. pneumoniae	KPC-3	128	>2048	0.25/4	0.25/4	2/1	2/1	16	32
K. pneumoniae	KPC-2	1024	>2048	1/4	1/4	4/2	4/2	128	>128
K. pneumoniae	KPC-cured	4	4	0.25/4	0.5/4	1/0.5	1/0.5	>128	>128

Conclusions: NXL demonstrated a remarkably wide and potent β L inhibitory potency against contemporary isolates producing clinically important β L. These results should be used to optimize CPT/NXL dosing regimens.

Introduction

The goal of this study was to evaluate the activity of ceftaroline alone and in combination with NXL104, a new developmental β -lactamase inhibitor (see Poster F1-1492; Figure 1), against resistant gram-negative isolates from Group A and C β -lactamases.

 β -lactamases, due to their potential to disseminate and their ability to expand their hydrolytic profile as a result of gene mutations, are particularly threatening. Genes encoding β -lactamases are often located in readily acquired mobile elements that encode resistance to other antimicrobial classes, thus narrowing the therapeutic options to treat infections caused by these organisms.

Ceftaroline is a novel broad-spectrum cephalosporin currently under development for the treatment of skin and skin structure infection and community acquired pneumonia. Ceftaroline possesses both gram-positive and gram-negative activity with extended action against methicillin-resistant *Staphylococcus aureus* (MRSA) and penicillin-resistant *Streptococcus pneumoniae* (PRSP). As with other cephalosporins, ceftaroline is less active against extended-spectrum β -lactamase (ESBL)-producing organisms. To expand the spectrum of activity of ceftaroline against ESBLs, its utility when combined with NXL104 was investigated. NXL104 has demonstrated activity against class A β -lactamases, such as TEM, SHV, CTX-M, and KPC enzymes, and class C cephalosporinases. The bactericidal activity (by MIC/MBC comparisons and killing curves) of ceftaroline alone, NXL104 alone, and ceftaroline combined with NXL104 was tested against critical target organisms.

Strains possessing various β -lactamases were selected for elevated expression of the genes encoding these enzymes as measured by quantitative real-time PCR (qRT-PCR) and compared with an internal control gene. Additionally, 1 strain harboring *bla*_{KPC-2} was cured of the plasmid carrying this gene, and parental and cured strains were compared.

Materials and Methods

Bacterial Isolates

Expression of the genes encoding the β-lactamase was measured in 16 clinical strains (Table 1). 5 strains with the highest gene expression and a cured strain (4207J) were selected for the evaluation of bactericidal activity. These were 3 *Klebsiella pneumoniae* isolates that carried genes encoding KPC-3, KPC-2, and CTX-M-15; 1 *Escherichia coli* carrying *bla*_{CMY-2}; 1 *Enterobacter cloacae* with stably derepressed chromosomal AmpC; and a *K. pneumoniae* cured of the plasmid carrying KPC-2. *E. coli* ATCC 25922 was tested for quality control purposes.

The presence of acquired β -lactamase-encoding genes was evaluated by PCR using primers targeting genes encoding several variants of these genes. All amplicons were sequenced and analyzed.

Determination of β-Lactamase Genes Expression

Quantification of β -lactamase genes transcriptional levels was evaluated by qRT-PCR on iCycler iQTM5 System (Bio-Rad; Hercules, CA, USA). Total RNA was extracted from mid-log-phase bacterial cultures using RNA Protect Reagent and RNeasy Mini Kit (Qiagen; Hilden, Germany). Residual DNA was eliminated with Promega RNase-free DNase (Madison, WI, USA). Reversetranscription PCR was performed using One Step RT-PCR Kit (Qiagen) with SYT09 (Invitrogen; Carlsbad, CA, USA). Relative quantification of target genes expression was performed in duplicate by normalization to an endogenous reference gene (*gyrA*). The critical threshold cycle (*C*_T) numbers were determined by the detection system software and the amount of target was given as 2⁻ $\Delta\Delta^{T}$, where $\Delta\Delta T$ is the difference between the target and reference gene *C*_T values.

Plasmid Curing

Plasmid curing was performed by culturing a high inoculum of isolate 27-908M in the presence of ethidium bromide (DNA intercalating). Colonies were screened in plates with and without imipenem at 4 μ g/mL. Colonies that were able to grow only in plates without imipenem were confirmed by PCR to have lost the gene encoding KPC. Isolates were also evaluated by pulsed-field gel electrophoresis to verify that they were derived from 27-908M.

M. CASTANHEIRA¹, H.S. SADER¹, I. CRITCHLEY², G. WILLIAMS², R.N. JONES¹ ¹JMI Laboratories, North Liberty, IA; ²Cerexa Inc., Oakland, CA (a wholly-owned subsidiary of Forest Laboratories, Inc, New York, NY)

MIC, MBC, and Time-kill Curve Studies

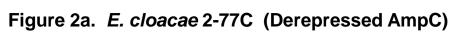
MIC and MBC were determined with and without 10% human serum using Clinical and Laboratory Standards Institute (CLSI) procedures. Ceftaroline was tested alone and in combinations with NXL104 at a fixed concentration of 4 μ g/mL and at a 2:1 ratio. The lowest concentration of the tested agent that killed ≥99.9% of the initial inoculum was defined as the MBC end point.

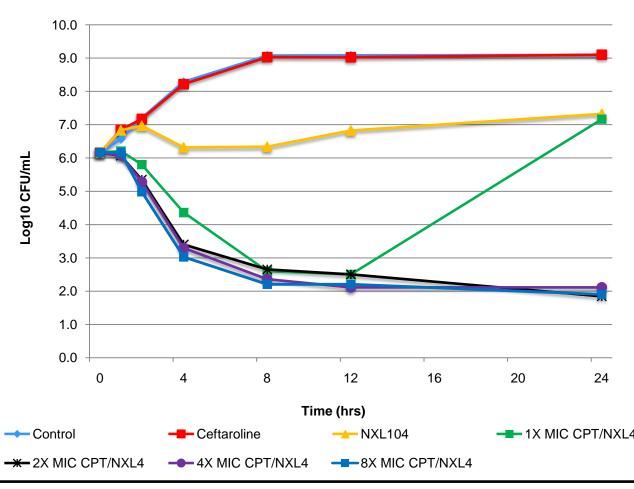
Time-kill bactericidal activity was performed for ceftaroline/NXL104 on 5 selected strains according to methods described by Moody and Knapp, NCCLS M21-A3, and M26-A. The compounds were tested at 1X, 2X, 4X, 8X MIC and colony counts were performed at $T_{0,} T_{2,} T_{4,} T_{8}$, and T_{24} .

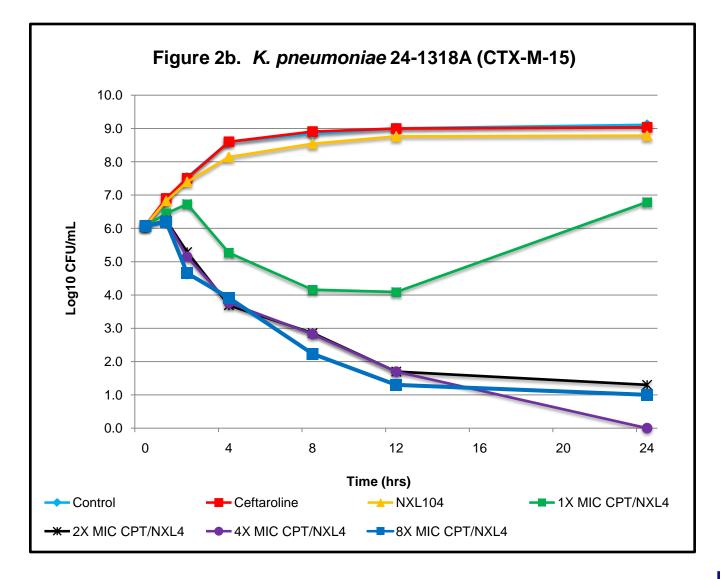
Results

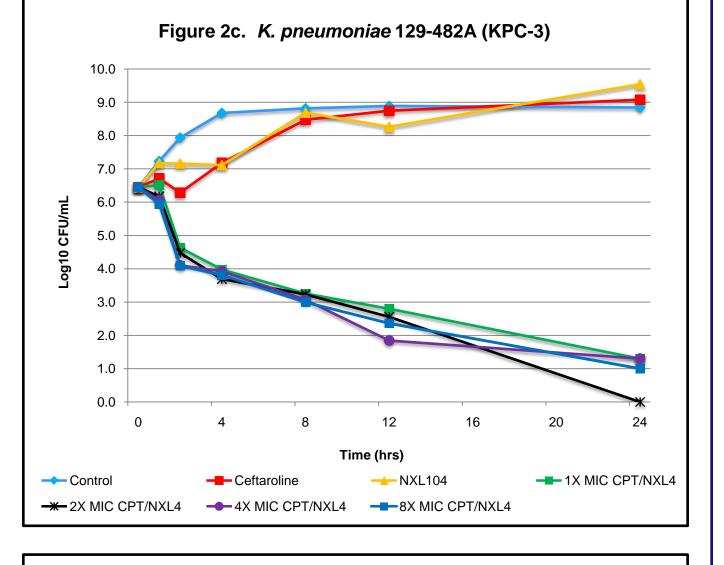
- Five clinical isolates were selected based on their highest expression levels of β-lactamase genes, as shown by qRT-PCR (Table 1). Included was a KPC-2 producing strain (27-908M) and its plasmid-cured derivative (4207J) lacking the KPC-2 β-lactamase gene.
- MIC and MBC results were generally high for ceftaroline and NXL104 when tested alone (Table 2).
- Ceftaroline MIC results were greatly decreased in the presence of NXL104 at fixed 4 µg/mL and 2:1 ratio (data not shown):
 >512-fold for β-lactamase-producing strains and 8- to 16-fold for the plasmid-cured strain (4207J).
- The addition of 10% pooled human serum in the media did not significantly alter MIC or MBC results (Table 2).
- Ceftaroline/NXL104 demonstrated a sustained, rapid killing effect on *E. cloacae* (2-77C) expressing high levels of AmpC β-lactamase for 2X, 4X, and 8X MIC experiments (≥4 log₁₀ CFU/mL killing). At 1X MIC, the killing was slightly slower and regrowth was detected at 8 to 12 hours (Figure 2a).
- K. pneumoniae (24-1318A) producing CTX-M-15 when treated with ceftaroline/NXL104 at 2X to 8X MIC demonstrated rapid killing with ≥5 log₁₀ reduction in CFU/mL (Figure 2b). At 1X MIC, a 2 log₁₀ CFU/mL reduction in the initial inoculum for 12 hours was followed by regrowth at 1X MIC.
- NXL104 at fixed 4 µg/mL combined with ceftaroline produced bactericidal effects (>4 log₁₀ CFU/mL killing) at concentrations of 2X to 8X MIC (0.25/4 to 2/4 µg/mL) for KPC-3-producing *K. pneumoniae* 129-482A. No regrowth was observed (Figure 2c).
- K. pneumoniae 27-908M producing high levels of KPC-2 showed complete killing (to limit of test sensitivity) at 2X to 8X MIC concentrations and regrowth at 1X MIC (1/4 µg/mL; 4-8 hours) (Figure 2d).
- K. pneumoniae 4207J (isolate 27-908M cured of plasmid carrying bla_{KPC-2}) harbored bla_{TEM-1} and bla_{SHV-27}. Rapid and continued bactericidal effects (≥4 log₁₀ CFU/mL reductions) were evident for 2X to 8X MIC. Ceftaroline/NXL104 killing was not achieved for 1X MIC until 24 hours, although ceftaroline alone at 2X MIC was effective against this strain (Figure 2e).
- Ceftaroline/NXL104 at 2:1 ratio showed rapid killing and bactericidal effect for all strains tested, similar to the results observed with ceftaroline/NXL104 at a fixed concentration of 4 µg/mL (data not shown).

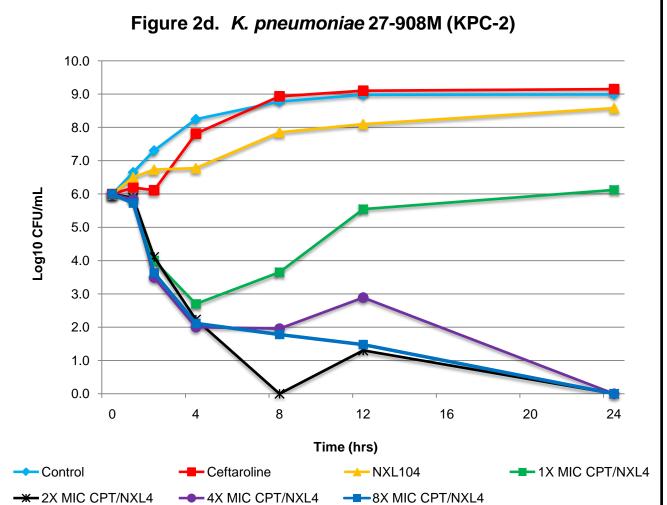
Table 1. Results for Gene Expression Experiments Performed on 16 *Enterobacteriaceae* Clinical Isolates to Determine Relative Expression of β -lactamase-encoding Genes.

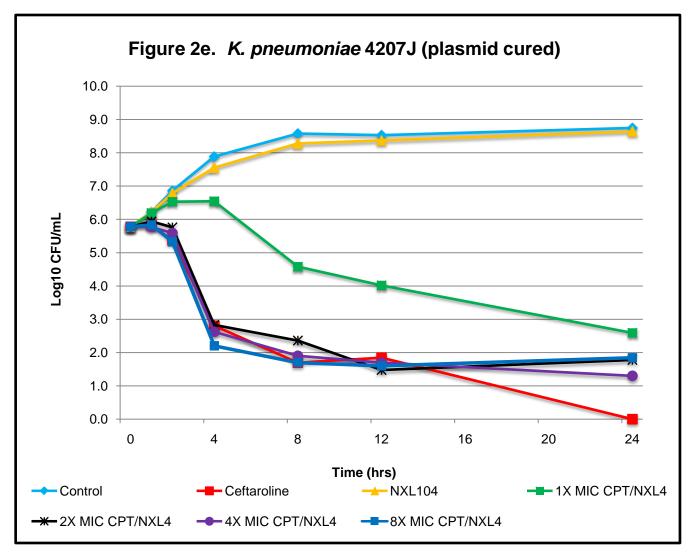

Isolate ^a	Year isolated	Organism	Resistance mechanism	Mean of normalized expression of β-lactamase gene ^b
4-211M	2005	Klebsiella pneumoniae	KPC-2	1.69E-01
4-221M	2005	Klebsiella pneumoniae	KPC-2	1.71E-01
27-908M	2007	Klebsiella pneumoniae	KPC-2	6.43E-01
02-484M	2005	Klebsiella pneumoniae	KPC-2	2.51E-01
82-3665A	2007	Klebsiella pneumoniae	KPC-3	1.79E-01
82-7515A	2007	Klebsiella pneumoniae	KPC-2	2.47E-01
129-482A	2007	Klebsiella pneumoniae	KPC-3	7.55E-01
24-1318A	2007	Klebsiella pneumoniae	CTX-M-15	4.01E+02
3-13091A	2007	Klebsiella pneumoniae	CTX-M-15	3.85E+02
30-996M	2007	Klebsiella pneumoniae	CTX-M-15	5.34E+01
29-1940M	2007	Escherichia coli	CMY-2	1.33E+01
29-2783M	2006	Escherichia coli	CMY-2	1.15E+01
29-2802M	2006	Klebsiella pneumoniae	CMY-2	5.99E+06
2-77C	2007	Enterobacter cloacae	De-repressed AmpC	2.04E+02
82-1065C	2007	Enterobacter cloacae	De-repressed AmpC	2.07E+01
30-12871A	2007	Enterobacter cloacae	De-repressed AmpC	1.01E+02


a. Isolates selected for kill-curve analysis are highlighted.
b. Gene expression was performed quantified by normalization of the target gene in relation to an endogenous reference (avrA)


Table 2. Ceftaroline with and without NXL104 MIC/MBC Comparisons and Different Testing Conditions Against 7 Strains of *Enterobacteriaceae*, 6 Producing Broad-Spectrum β-Lactamases


			Antimicrobial Agent (µg/mL)							
			Ceftaroline/NXL104							
•			Ceftaroline		(fixed 4 µg/mL)		(2:1 ratio)		NXL104 alone	
Species (isolate no.)	Resistance mechanism	10% serum	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
<i>E. coli</i> (29-1940M)	CMY-2	-	256	>2048	0.25/4	0.5/4	2/1	2/1	8	16
		+	256	>2048	0.12/4	0.25/4	1/0.5	2/1	16	>128
E. cloacae (2-77C)	AmpC	-	1024	>2048	1/4	1/4	4/2	4/2	16	128
		+	512	>2048	0.5/4	1/4	4/2	4/2	16	128
<i>K. pneumoniae</i> (24-1318A)	CTX-M-15	-	2048	>2048	0.12/4	0.12/4	1/0.5	1/0.5	16	>128
		+	2048	>2048	0.12/4	0.12/4	0.5/0.25	1/0.5	32	>128
<i>K. pneumoniae</i> (129-482A)	KPC-3	-	128	>2048	0.25/4	0.25/4	2/1	2/1	16	32
		+	128	>2048	0.25/4	0.25/4	1/0.5	2/1	16	>128
K. pneumoniae (27-908M)	KPC-2	-	1024	>2048	1/4	1/4	4/2	4/2	128	>128
		+	2048	>2048	0.5/4	0.5/4	2/1	4/2	>128	>128
K. pneumoniae (4207J)	KPC (-)	-	4	4	0.25/4	0.5/4	1/0.5	1/0.5	>128	>128
		+	2	8	0.25/4	0.5/4	1/0.5	1/0.5	>128	>128
<i>E. coli</i> (ATCC 25922)	Wildtype	-	0.12	0.12	0.06/4	0.06/4	0.12/0.06	0.12/0.06	8	32
		+	0.06	0.06	0.06/4	0.06/4	0.12/0.06	0.12/0.06	64	128


Figure 2. Time-kill Curves of Ceftaroline/NXL104 at Fixed 4 μ g/mL (CPTNXL4) Concentration Tested for 5 Selected β -Lactamase-Producing Isolates (2a-2e).



ICAAC 2009 JMI Laboratories North Liberty, IA, USA www.jmilabs.com 319.665.3370, 319.665.3371 mariana-castanheira@jmilabs.com

Conclusions

- MBC and time-kill curve results indicated that NXL104 possesses wide and potent β-lactamase-inhibitory activity against strains harboring contemporary challenging β-lactamases, each with high-level expression of β-lactamase-encoding genes.
- All 6 tested strains showed rapid killing with no regrowth when tested by time-kill curve at 2X to 8X MIC, whereas 3 of 6 strains showed regrowth at 1X MIC.
- A secondary finding from this study showed that the addition of human serum (10%) does not compromise β-lactamase-inhibitory activity of NXL104.
- The results of this investigation indicate that ceftaroline, when combined with NXL104, may be a treatment option for infections caused by multidrug-resistant *Enterobacteriaceae* with isolates that carry genes encoding KPC, CTX-M, and AmpC.

References

- 1. Clinical and Laboratory Standards Institute (2009). *M07-A8. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard eighth edition.* Wayne, PA: CLSI.
- Clinical and Laboratory Standards Institute (2009). *M100-S19. Performance standards for antimicrobial susceptibility testing. 19th informational supplement.* Wayne, PA: CLSI.
- Endimiani A, Choudhary Y, Bonomo RA (2009). In vitro activity of NXL104 in combination with betalactams against *Klebsiella pneumoniae* isolates producing KPC carbapenemases. *Antimicrob Agents Chemother* 53: 3599-3601.
- 4. Lorian V (1996). Antibiotics in laboratory medicine. Baltimore, Williams and Wilkins.
- 5. Moody J, Knapp C (2004). Time-kill assay for determining synergy. *Clinical Microbiology Procedures Handbook* H. D. Isenberg. Washington, DC, ASM Press: 5.10.31-16
- National Committee for Clinical Laboratory Standards (1999). M21-A3. Methodology for the serum bactericidal test; approved guideline. Wayne, PA: NCCLS.
 National Committee for Clinical Laboratory Standards (2001). M22, 42. Development of in vitre
- 7. National Committee for Clinical Laboratory Standards (2001). *M*23-A2. Development of in vitro susceptibility testing criteria and quality controls paramaters, 2nd edition. Wayne, PA: NCCLS.
- National Committee for Clinical Laboratory Standards (1999). M 26-A. Methods for determining
- bactericidal activity of antibacterial agents; approved guideline. Wayne, PA: NCCLS.
 Stachyra T, Levasseur P, Pechereau MC, Girard AM, Claudon M, Miossec C, Black MT (2009). *In vitro* activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. *J Antimicrob Chemother* 64: 326-329.

