Conclusions: BC-3205 shows promising activity against the most prevalent Gram-positive pathogens producing skin and skin structure infections, and is being developed for oral treatment causing community-acquired respiratory tract infections.

BC-3205 was also highly active against S. aureus, methicillin-susceptible and -resistant isolates including CA-MRSA, S. pneumoniae, S. pyogenes and other streptococcal species with 100% of strains being inhibited (≥0.12 µg/ml).

Non-cross-resistance was observed with macrolides, lincosamides, and streptogramins A and B.

Streptococcus pyogenes, Staphylococcus aureus, Coagulase-negative Staphylococci, Neisseria meningitidis, and Haemophilus influenzae are inhibited at BC-3205 concentrations of 0.06 - 0.12 µg/ml, identical to that of MSSA isolates.

The most potent compound tested against S. aureus was BC-3205 exhibiting potent activity against vancomycin-susceptible and -resistant Staphylococcus spp., (MIC90 0.06 µg/ml). Resistance to oxacillin is related to the meca gene encoding the MecA protein, which is responsible for one-half of the resistance to oxacillin.

BC-3205 was highly active against S. aureus producing both oxacillin-susceptible and -resistant strains, including methicillin-resistant S. aureus (MRSA) and community-acquired MRSA (CA-MRSA) (MIC90 0.06 µg/ml).

BC-3205 was also fully active against bacterial strains resistant to macrolides, clindamycin, tetracyclines and quinolones.

BC-3205 is being developed for oral treatment of skin and skin structure infections (SSSI) and community-acquired pneumonia (CAP) as it exhibits potent antibacterial activity against common pathogens causing SSSI and CAP, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Erysipelothrix rhusiopathiae, Staphylococcus lugdunensis, and Bacillus subtilis.

BC-3205 is being developed for oral treatment of skin and skin structure infections (SSSI) and community-acquired pneumonia (CAP) for the treatment of potential antibacterial agents against common pathogens causing SSSI and CAP, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Erysipelothrix rhusiopathiae, Staphylococcus lugdunensis, and Bacillus subtilis.

BC-3205 was highly active against S. aureus producing both oxacillin-susceptible and -resistant strains, including methicillin-resistant S. aureus (MRSA) and community-acquired MRSA (CA-MRSA) (MIC90 0.06 µg/ml). Resistance to oxacillin is related to the meca gene encoding the MecA protein, which is responsible for one-half of the resistance to oxacillin.