Activity of MK-3118, a New Oral Glucan Synthase Inhibitor, Tested Against Candida and Aspergillus spp. using Two Reference Broth Microdilution Methods

M-1714

MA PFALLER, SA MESSEY, MR MOTYL, RN JONES, M CASTANHEIRA

JMI Laboratories, North Liberty, IA; Merck Sharp & Dohme Corp., Kenilworth, NJ

INTRODUCTION

The echinocandins, ravuconazole, and micafungin are new antifungal agents. However, caspofungin, anidulafungin, and micafungin show cross-resistance to fusidic acid (Fks) hot spot (HS) mutants. MK-3118 is a potent inhibitor of fungal glucan synthase. The aim of this study was to determine the efficacy of MK-3118 against Fks HS and FLC-R mutants.

MATERIALS AND METHODS

Antibiotics

- **C. albicans** C. tropicalis, C. glabrata, and C. parapsilosis were from the collection of Pathology Department.
- **Aspergillus fumigatus**, **A. niger**, and **A. terreus** were from the collection of Microbiology Department.
- **C. tropicalis** displaying Fks HS and FLC-R mutations.

In Vivo and In Vitro Testing

- **In vivo testing**: MK-3118 was tested in a mouse model of sepsis caused by S. aureus. The efficacy of MK-3118 was compared to that of anidulafungin.
- **In vitro testing**: MK-3118 was tested against a panel of Fks HS and FLC-R mutants using the broth microdilution method.

Statistical Analysis

- **Correlation**: The results were analyzed using Pearson’s correlation coefficient.

RESULTS

- **MK-3118** was active against 31 Candida spp. (MIC range, 0.06-1 µg/mL), C. glabrata (MIC range, 0.12-2 µg/mL), C. glabrata (MIC range, 0.5-2 µg/mL), and C. glabrata (MIC range, 0.06-1 µg/mL).
- **MK-3118** was also active against 31 Aspergillus spp. (MIC range, 0.25-1 µg/mL).
- The MIC values of MK-3118 against Fks HS and FLC-R mutants were determined by broth microdilution and compared to those of caspofungin and fluconazole.

CONCLUSIONS

- MK-3118 is a potent inhibitor of fungal glucan synthase and may be a promising alternative to the echinocandins for the treatment of infections caused by Fks HS and FLC-R mutants.
- MK-3118 showed better efficacy than caspofungin and fluconazole in the mouse model of sepsis.

ACKNOWLEDGEMENTS

The authors would like to thank Drs. D.S. Perlin (Public Health Research Institute, New York, NY) and D. Labes (Boston University, Boston, MA) for providing samples and advice. This study was supported by the National Institutes of Health (NIH) and the State of Sao Paulo Research Foundation (FAPESP).

REFERENCES

Table 1: Comparison of GLSI and EUCAST broth microdilution methods when testing the alpha glucan synthase inhibitor, MK-3118, against Candida and Aspergillus spp.

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (µg/mL)</th>
<th>GLSI</th>
<th>EUCAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2: Comparison of EBCM and EUCAST broth microdilution methods when testing the alpha glucan synthase inhibitor, MK-3118, against Candida and Aspergillus spp.

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (µg/mL)</th>
<th>EBCM</th>
<th>EUCAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 3: Comparison of GLSI and EUCAST broth microdilution methods when testing the alpha glucan synthase inhibitor, MK-3118, against Candida and Aspergillus spp.

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (µg/mL)</th>
<th>GLSI</th>
<th>EUCAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

ICAC 2012 JMI Laboratories North Liberty, IA, USA

www.jmilabs.com

ph. 319.665.3370, ext. 2155, 5577

martana-castanheira@jmilabs.com

ICAC 2012 JMI Laboratories North Liberty, IA, USA

www.jmilabs.com

ph. 319.665.3370, ext. 2155, 5577

martana-castanheira@jmilabs.com

ICAC 2012 JMI Laboratories North Liberty, IA, USA

www.jmilabs.com

ph. 319.665.3370, ext. 2155, 5577

martana-castanheira@jmilabs.com