The echinocandins, caspofungin and micafungin, are now well established as antifungal agents. However, concerns about the use of these agents have been reflected in the published literature on MIC distributions, testing methods, and clinically relevant interpretive breakpoints for broth microdilution methods and clinical relevance of in vitro susceptibility testing of Candida spp. The present study investigated the potential for use of micafungin (MCF) as a surrogate marker to predict susceptibility and resistance of Candida spp. to MCF, comparing MIC distributions and testing methods. The methods and results are presented here.

MATERIALS AND METHODS
Organisms
A total of 3,749 clinical isolates of Candida spp. obtained from 2002 to 2009 were tested. The organisms included 102 isolates of C. albicans, 539 of C. glabrata, 54 of C. krusei, 200 isolates of C. tropicalis, 115 isolates of C. parapsilosis, 422 isolates of C. guilliermondii, and 3,376 isolates of C. lusitaniae. All isolates were tested for MCF susceptibility by broth microdilution methods as described by CLSI (M27-A3 guidelines). The MIC results for both agents were read following 24-h of incubation. In all instances, the MIC values were determined by both antifungal reagents (91% concordance overall). Using the scattergram (data not shown). The error rate bounding method to minimize the absolute categorical agreement (CA) between the test results was 98.9% with a very high variation among caspofungin MIC values produced in different epidemiological cutoff values (ECVs) of 0.12 µg/ml for CSF and 0.03 µg/ml for MCF to differentiate wild-type (WT) from non-WT strains of C. glabrata.

Antifungal susceptibility testing
All isolates were tested for in vitro susceptibility to caspofungin (M27-A3 guidelines). The MIC results for both agents were read following 24-h of incubation. Using the scattergram (data not shown). The error rate bounding method to minimize the absolute categorical agreement (CA) between the test results was 98.9% with a very high variation among caspofungin MIC values produced in different epidemiological cutoff values (ECVs) of 0.12 µg/ml for CSF and 0.03 µg/ml for MCF to differentiate wild-type (WT) from non-WT strains of C. glabrata.

RESULTS
The results of the susceptibility testing of 3,749 isolates of Candida spp. obtained from 2002 to 2009 were tested. The organisms included 102 isolates of C. albicans, 539 of C. glabrata, 54 of C. krusei, 200 isolates of C. tropicalis, 115 isolates of C. parapsilosis, 422 isolates of C. guilliermondii, and 3,376 isolates of C. lusitaniae. All isolates were tested for MCF susceptibility by broth microdilution methods as described by CLSI (M27-A3 guidelines). The MIC results for both agents were read following 24-h of incubation. In all instances, the MIC values were determined by both antifungal reagents (91% concordance overall). Using the scattergram (data not shown). The error rate bounding method to minimize the absolute categorical agreement (CA) between the test results was 98.9% with a very high variation among caspofungin MIC values produced in different epidemiological cutoff values (ECVs) of 0.12 µg/ml for CSF and 0.03 µg/ml for MCF to differentiate wild-type (WT) from non-WT strains of C. glabrata.