C-614

ABSTRACT

Background: Omadacycline (OMC) is a broad spectrum new aminomethylcycline which is currently under clinical development for acute bacterial skin and skin structure infections and communityacquired bacterial pneumonia, as oral and intravenous once daily formulations. It is active against many Gram-negative pathogens from the urinary tract and overcomes tetracycline (TET) resistance In this study, OMC and comparators were tested against Enterobacteriaceae (EB) from UTI selected from a 2014 global surveillance program and compared to results of testing isolates causing UTI (urinary or bloodstream) from 2010 surveillance.

Methods: A total of 150 EB identified as causing UTI from Europe (EU) and the same numbers from North America (NA, 2014) were selected. OMC and comparators (except 2014 OMC and TET which were tested in frozen-form panels) were tested in validated dry-form panels by broth microdilution in CA-MHB following CLSI methods. CLSI/EUCAST interpretive criteria and CLSI quality control guidelines were applied. ESBL-phenotype (ESBL) for Escherichia *coli* or *Klebsiella pneumoniae* was defined as a MIC at $\geq 2 \mu g/mL$ for ceftriaxone, ceftazidime or aztreonam.

Results: The OMC MIC_{50/90} for EB collected during 2014 was 2 and \geq 8 µg/mL, respectively. The MIC_{50/90} for *E. coli* was 1 and 2 µg/mL similar to 2010 (MIC_{50/90}, 0.5 and 2 μ g/mL). The activity of OMC against ESBL E. coli was similar in 2010 and 2014 (MIC_{50/90}, 1 and 4 µg/mL). The MICs for 91.7% of *Klebsiella* spp. isolates in 2014 (89.7%, 2010) were ≤4 µg/mL. In 2014 and 2010, a total of 95.8 and 100.0% of ESBL *E. coli* and 75.0 and 73.9% of ESBL *Klebsiella* spp. exhibited MIC values at $\leq 4 \mu g/mL$. Tigecycline (TIG) susceptibility (CLSI or EUCAST) for EB was 94.0 (2014) and 99.4% (2010). TET susceptibility for EB (2014 and 2010) ranged from 60.1-66.1%, ceftazidime from 82.1-92.3%, gentamicin (GEN) from 85.7-90.9%, imipenem from 91.0-99.3% and levofloxacin (LEV) from 75.1-79.9% TIG S for EB for 2014 and 2010 for NA and EU ranged from 94.0-99.5%, GEN from 82.8-93.6%, and LEV from 69.5-82.0%.

Conclusions: OMC was active against EB isolates from NA and EU causing UTI and activity was similar between 2010 and 2014. Further study with OMC in the treatment of UTI caused by EB is indicated.

INTRODUCTION

Urinary tract infections (UTI) are common infections that occur in the community and healthcare settings. The most common cause of bacterial UTI is *Escherichia coli*. In the healthcare setting, bacterial resistance to commonly prescribed antibacterials is an issue. Extended-spectrum β -lactamases and carbapenemases may occur, thus limiting β -lactam options. Further clones such as *E. coli* ST-131 may occur which are often also resistant to other antibacterial classes such as the fluoroquinolones. The resistance to oral agents in the community setting and the emergence of the ESBL-positive *E. coli* into the community indicate an urgent need for new alternatives to treat UTI.

Omadacycline (PTK 0796; [7-dimethylamino, 9-(2,2-dimethyl-propyl)aminomethylcycline]) is a novel tetracycline antibacterial agent, which is currently under clinical development for use as both an oral and intravenous formulation against acute bacterial skin and skin structure infections, community-acquired pneumonia, and urinary tract infections. Omadacycline has broad spectrum activity against Grampositive, Gram-negative, atypical and anaerobic bacteria, including those with multi-drug resistance (MDR).

In this study, the activity of omadacycline and comparator agents was evaluated against isolates causing UTI in 2014. These results were compared to those from a 2010 global surveillance program.

MATERIALS AND METHODS

Organism collection: A total of 151 Enterobacteriaceae which were identified as urinary tract isolates from patients in medical centers in Europe and 150 from North America (2014 Global Surveillance; n=301) were selected for susceptibility testing. These organisms were chosen to represent approximate percentages of Enterobacteriaceae species in the complete collection of UTI (2014). Organisms (number) included Citrobacter amalonaticus (1), C. freundii (11), C. koseri (8), Enterobacter aerogenes (7), E. coli (138), E. cloacae (16), Klebsiella oxytoca (8), K. pneumoniae (52), Morganella morganii (14), Proteus mirabilis (22), P. vulgaris (7) Providencia rettgeri (6), P. stuartii (5), Serratia marcescens (6). Enterobacteriaceae from UTI (including isolates from blood, designated by the medical center as having originated from UTI) from Europe and North America from a 2010 surveillance program were identified. The organism collection contained C. freundii (5), C. koseri (3), E. aerogenes (12), E. asburiae (1), Unspeciated Enterobacter (1), E. coli (543), E. cloacae (23), K. oxytoca (32), K. pneumoniae (123), M. morganii (8), P. mirabilis (50), Unspeciated Providencia (4), P. vulgaris (3), P. rettgeri (1), P. stuartii (1), Unspeciated Salmonella (1), S. marcescens (15). The susceptibility results for isolates from 2014 were compared to the results of 826 isolates from 2010.

Susceptibility testing: Comparator agents were tested in validated dry-form panels manufactured by Thermo Fisher Scientific Inc. (Cleveland, Ohio, USA) by broth microdilution in cation-adjusted Mueller-Hinton broth following Clinical and Laboratory Standards Institute (CLSI) methods. Omadacycline was tested in dryform panels in 2010 and panels with fresh frozen medium made at JMI Laboratories (North Liberty, Iowa, USA) were used to test the 2014 isolates. Concurrent quality control (QC) testing was performed to assure proper test conditions and procedures (M07-A10, M100-S25). The QC strains tested were *E. coli* ATCC 25922 and *P.* aeruginosa ATCC 27853 (M100-S25). All QC results were within published ranges Interpretive criteria used were those of CLSI (M07-A10, M100-S25) and EUCAST (2015).

Table 1. Cumulative frequency distribution of omadacycline MIC results for tract isolatos from Europo (ELI) and North Amori

urinary tract isolates from Europe (EU) and North America (NA).									Organism group		2014						2010								
	No. of			MIC in μg/mL (cumulative %): MIC ₅₀ MIC ₅₀						MIC	(no. tested)/	CLSI ^a EUCAST ^a (µg/mL				L)	CI			EUC	AST ^a	(µg/mL)			
Organism/region	Year	Isolates	≤0.12	0.25	0.5	1	2	4	≥8	WIC 50	WIC90	antimicrobial agent	%S	%R	%S	%R	MIC _{50/90}	MIC rar	nge	%S	%R	%S	%R	MIC _{50/90}	MIC range
Enterobacteriacea	ae											Enterobacteriaceae				(30							(826	6)	
NA + EU	2014	301		2 (0.7)	66 (22.6)	78 (48.5)	67 (70.8)	28 (80.1)	60 (100.0) ^a	2	≥8	Omadacycline	-	-	-	-	2/≥8	0.25 —	≥8	-	-	-	-	1/4	0.25 ->32
NA + EU	2010	826		49 (5.9)	279 (39.7)	199 (63.8)	170 (84.4)	47 (90.1)	82 (100.0) ^b	1	4	Tigecycline	98.3	0.0 ^b	94.0	1.7	0.12/1	≤0.015 -	— 4	99.4	0.0 ^b	95.9	0.6	0.12/0.5	≤0.03 — 4
NA	2014	150			39 (26.0)	33 (48.0)	35 (71.3)	8 (76.7)	35 (100.0)	2	≥8	Doxycycline	61.5	32.2	-	•	2/≥16	0.25 —		69.1	23.4	-	-	1/≥16	≤0.06 — ≥16
NA	2010	377		27 (7.2)	()	、	. ,	17 (90.2)	37 (100.0)	1	4	Tetracycline	60.1	37.5	-	-	2/≥32	0.5 — ≥		66.1	32.6	-	-	2/≥32	≤0.25 — ≥16
EU	2014	151		2 (1.3)	27 (19.2)	45 (49.0)	32 (70.2)	20 (83.4)	25 (100.0)	2	≥8	AMX-CLV°	63.5	36.5 ^d	63.5	36.5	8/≥16	≤1 — ≥		75.5	24.5 ^d	75.5	24.5	4/≥16	≤1 — ≥16
EU	2014	449		22 (4.9)	155 (39.4)	()		, ,	45 (100.0)	1	_0 ≥8	Aztreonam	84.4	14.0	82.1	15.6	≤0.12/16	≤0.12 —		90.9	7.3	89.5	9.1	≤0.12/4	≤0.12 — ≥32
	2010	449		22 (4.9)	155 (59.4)	90 (00.0)	101 (03.3)	30 (90.0)	45 (100.0)	-	20	Ceftazidime Ceftriaxone	87.4 79.7	10.6 18.6	82.1 79.7	12.6 18.6	0.25/16 ≤0.06/≥16	0.03 — ≤0.06 —		92.3 88.4	6.1 11.0	89.5 88.4	7.7 11.0	0.12/2 ≤0.06/4	0.03 — >32 ≤0.06 — ≥16
E. coli				- (, ,)				- (-	Gentamicin	88.0	11.6	85.7	12.0	≤0.00/≥10 ≤1/≥16	≤0.00 — ≤1 — ≥		90.9	8.4	90.4	9.1	≤0.00/4 ≤1/2	≤0.00 - ≥10
NA+EU	2014	138		2 (1.4)	58 (43.5)	49 (79.0)	20 (93.5)	8 (99.3)	1 (100.0)	1	2	Imipenem	91.0	2.7	97.3	0.0	≤0.12/1	≤1 — ≥ ≤0.12 –		90.9 97.3	0.4	90.4 99.3	0.2	≤0.12/0.5	≤1 — ≥10 ≤0.12 — ≥16
NA+EU	2010	543		49 (9.0)	273 (59.3)	134 (84.0)	70 (96.9)	15 (99.6)	2 (100.0)	0.5	2	Levofloxacin	78.4	17.9	75.1	21.6	≤0.12/≥8	≤0.12 –		79.9	18.2	79.0	20.1	≤0.5/≥8	≤0.5 — ≥8
NA	2014	59			33 (55.9)	16 (83.1)	9 (98.3)	1 (100.0)		0.5	2	TMP-SMX ^e	67.8	32.2	67.8	31.6	≤0.5/≥8	≤0.5 —		73.1	26.9	73.1	26.8	≤0.5/≥8	≤0.5 — ≥8
NA	2010	224		27 (12.1)	122 (66.5)	56 (91.5)	16 (98.7)	3 (100.0)		0.5	1	E. coli				(13			-				(54		
EU	2014	79		2 (2.5)	25 (34.2)	33 (75.9)	11 (89.9)	7 (98.7)	1 (100.0)	1	4	Omadacycline	-	-	-	-	1/2	0.25 —	≥8	-	-	-	-	0.5/2	0.25 — 8
EU	2010	319		22 (6.9)	151 (54.2)	78 (78.7)	54 (95.6)	12 (99.4)	2 (100.0)	0.5	2	Tigecycline	100.0	0.0 ^b	100.0	0.0	0.06/0.12	≤0.015 -	— 1	100.0	0.0 ^b	100.0	0.0	0.12/0.25	≤0.03 — 1
E. coli ESBL-posit	tive											Doxycycline	68.1	24.6	-	-	2/≥16	0.25 —	≥16	73.1	18.4	-	-	1/≥16	≤0.06 — ≥16
NA+EU	2014	24			6 (25.0)	8 (58.3)	6 (83.3)	3 (95.8)	1 (100.0)	1	4	Tetracycline	65.9	33.3	-	-	2/≥32	0.5 — ≥	232	69.8	29.8	-	-	2/≥16	≤0.25 — ≥16
NA+EU	2010	48			15 (31.2)	10 (52.1)	18 (89.6)	5 (100.0)		1	4	AMX-CLV ^c	81.9	18.1 ^d	81.9	18.1	4/≥16	≤1 — ≥		80.5	19.5 ^d	80.5	19.5	8/≥16	≤1 — ≥16
NA	2010	8			2 (25.0)	4 (75.0)	1 (87.5)	1 (100.0)		1		Aztreonam	86.2	12.3	84.1	13.8	≤0.12/16	≤0.12 —		93.0	5.5	91.5	7.0	≤0.12/0.5	≤0.12 — ≥32
		-				· · /		、 ,		י ר		Ceftazidime	91.3	5.8	87.0	8.7	0.25/4	0.03 —		93.7	5.0	91.7	6.3	0.12/0.5	0.03 -> 32
NA	2010	19			3 (15.8)	6 (47.4)	8 (89.5)	2 (100.0)		2	4	Ceftriaxone	84.1	14.5	84.1	14.5	≤0.06/≥16	≤0.06 —		91.3	8.7	91.3	8.7	≤0.06/0.25	≤0.06 — ≥16
EU	2014	16			4 (25.0)	4 (50.0)	5 (81.2)	2 (93.8)	1 (100.0)	1	4	Gentamicin	87.7	11.6	85.5	12.3	≤1/≥16	≤1 — ≥		92.4	6.8	92.3	7.6	≤1/2	≤1 — ≥16
EU	2010	29			12 (41.4)	4 (55.2)	10 (89.7)	3 (100.0)		1	4	Imipenem Levofloxacin	100.0 73.9	0.0 26.1	100.0 73.9	0.0 26.1	≤0.12/≤0.12 ≤0.12/≥8	≤0.12 — ≤0.12 —		100.0 76.8	0.0 22.0	100.0 76.8	0.0 23.2	≤0.12/≤0.12 ≤0.5/≥8	≤0.12 — 1 ≤0.5 — ≥8
Klebsiella spp.												TMP-SMX ^e	66.7	33.3	66.7	33.3	≤0.12/≥8	≤0.12 —		70.0 69.9	30.1	69.9	23.2 30.1	≤0.5/≥8	≤0.5 — ≥8 ≤0.5 — ≥8
NA+EU	2014	60			1 (1.7)	22 (38.3)	23 (76.7)	9 (91.7)	5 (100.0)	2	4	Klebsiella spp.	00.7	55.5	00.7	(60		<u> </u>	20	09.9	30.1	09.9	(155		30.3 - 20
NA+EU	2010	155			5 (3.2)	53 (37.4)	67 (80.6)	14 (89.7)	16 (100.0)	2	≥8	Omadacycline	-	-	-	-	, 2/4	0.5 —	28	-		-	-	2/8	0.5 — 32
NA	2014	31			1 (3.2)	14 (48.4)	13 (90.3)	1 (93.5)	2 (100.0)	2	2	Tigecycline	100.0	0.0 ^b	96.7	0.0	0.25/0.5	≤0.015 -		99.4	0.0 ^b	96.8	0.6	0.25/0.5	0.06 — 4
NA	2010	103			1 (1.0)	44 (43.7)	38 (80.6)	12 (92.2)	8 (100.0)	2	4	Doxycycline	70.0	23.3	-	-	2/≥16	0.5 — ≥		78.1	16.8	-	-	1/≥16	0.25 — ≥16
EU	2014	29				8 (27.6)	10 (62.1)	8 (89.7)	3 (100.0)	2	≥8	Tetracycline	75.0	23.3	-	-	1/≥32	0.5 — ≥	≥32	78.1	18.7	-	-	/≥16	0.5 — ≥16
EU	2010				4 (7.7)	9 (25.0)	29 (80.8)		8 (100.0)	2	≥8	AMX-CLV ^c	75.0	25.0 ^d	75.0	25.0	2/≥16	≤1 — ≥	16	83.2	16.8 ^d	83.2	16.8	2/≥16	≤1 — ≥16
Klebsiella spp. ES					. ()	- ()	_= (===)	_ (••)	- ()		-	Aztreonam	75.0	23.3	75.0	25.0	≤0.12/≥32	≤0.12 —	≥32	87.1	11.6	85.2	12.9	≤0.12/16	≤0.12 — ≥32
	-					2 (12 5)	E (12 0)	E (7E 0)	4 (100.0)	4	\ 0	Ceftazidime	80.0	16.7	76.7	20.0	0.12/>32	0.06 —	>32	89.0	8.4	87.1	11.0	0.12/8	0.03 -> 32
NA+EU	2014					2 (12.5)	5 (43.8)	5 (75.0)	4 (100.0)	-	≥8	Ceftriaxone	73.3	26.7	73.3	26.7	≤0.06/≥16	≤0.06 —	≥16	86.5	13.5	86.5	13.5	≤0.06/≥16	≤0.06 — ≥16
NA+EU	2010				1 (4.3)	1 (8.7)	10 (52.2)	5 (73.9)	6 (100.0)	2	≥8	Gentamicin	80.0	20.0	80.0	20.0	≤1/≥16	≤1 — ≥	16	90.3	9.7	89.7	9.7	≤1/4	≤1 — ≥16
NA	2014	2					1 (50.0)	0 (50.0)	1 (100.0)	2		Imipenem	96.7	3.3	96.7	0.0	≤0.12/0.25	≤0.12 –		98.7	1.3	98.7	1.3	≤0.12/0.25	≤0.12 — ≥16
NA	2010	7					2 (28.6)	4 (85.7)	1 (100.0)	4		Levofloxacin	85.0	11.7	80.0	15.0	≤0.12/≥8	≤0.12 —		87.7	9.7	86.5	12.3	≤0.5/4	≤0.5 — ≥8
EU	2014	14				2 (14.3)	4 (42.9)	5 (78.6)	3 (100.0)	4	≥8	TMP-SMX ^e	63.3	36.7	63.3	36.7	≤0.5/≥8	≤0.5 —		82.6	17.4	82.6	16.8	≤0.5/≥8	≤0.5 — ≥8
EU 2010 16 1 (6.2) 1 (12.5) 8 (62.5) 1 (68.8) 5 (100.0) 2 ≥8									≥8	a. Criteria as publishe b. Breakpoints from F						e. f			imethoprii			le. <i>K. pneumoniae</i>	(52)		
 a. 55/60 isolates were either <i>Proteus, Morganella</i>, or <i>Providencia</i> spp. b. 56/82 isolates were either <i>Proteus, Morganella</i>, or <i>Providencia</i> spp. 										c. AMX-CLV = Amox															

Activity of Omadacycline Tested against Enterobacteriaceae Causing Urinary Tract Infections from a Global Surveillance Program (2014)

RK FLAMM, PR RHOMBERG, MD HUBAND, DJ FARRELL JMI Laboratories, North Liberty, IA, USA

Activity of omadacycline against Enterobacteriaceae (combined Europe and North America): 2010 compared to 2014

- The MIC₅₀ and MIC₉₀ for omadacycline for Enterobacteriaceae causing UTI from the 2010 surveillance program from Europe and North America combined was 1 and 4 µg/mL, respectively (**Table 1**). The MIC₅₀ and MIC₉₀ for omadacycline for Enterobacteriaceae causing UTI from the 2014 surveillance program from Europe and North America combined was 2 and ≥8 µg/mL, respectively (**Table 1**). The Enterobacteriaceae collection from 2010 contained more Proteus/Providencia/Morganella (17.9%) compared to the 2014 collection (8.1%). Proteus/Providencia/Morganella tend to have higher MIC values for omadacycline than E. coli and *Klebsiella* spp.
- The E. coli MIC₉₀ was 2 µg/mL for Europe and North America combined isolates for both 2014 and 2010 isolates (Table 1). For ESBL-negative phenotype *E. coli*, the MIC₉₀ for isolates from either year for Europe and North America combined was 2 µg/mL and it was 4 µg/mL for the ESBL-positive phenotype (Table 1).
- The MIC₅₀ and MIC₉₀ for omadacycline for *Klebsiella* spp. causing UTI from the 2010 surveillance program from Europe and North America combined was 2 and $\geq 8 \mu g/mL$, respectively (**Table 1**). The MIC₅₀ and MIC₉₀ for omadacycline for the selected *Klebsiella* spp. causing UTI from the 2014 surveillance program from Europe and North America was 2 and 4 µg/mL, respectively (**Table 1**). For ESBL-negative phenotype *Klebsiella* spp., the MIC_{on} for isolates from Europe and North America combined either year was 4 μ g/mL and \geq 8 μ g/mL for the ESBL-positive phenotype (**Table 1**).

Activity of omadacycline against Enterobacteriaceae: Europe compared to North America

• The omadacycline MIC₉₀ for Enterobacteriaceae from North America (2010) was 4 μ g/mL and it was $\geq 8 \mu g/mL$ for the European isolates (**Table 1**). For the 2014 isolates, the MIC₀₀s were ≥8 µg/mL (**Table 1**).

Table 2. Activity of omadacycline and comparator antimicrobial agents when tested
against combined North American and European urinary tract isolates by year (2014 vs
2010).

Susceptibility to comparator agents (combined regions): 2010 vs. 2014

(2014 vs. 2010).

(no. tested)/	
antimicrobial agent	
Entetrobaceriaceae	
Omadacycline	
Tigecycline	
Doxycycline	
Tetracycline	
AMX-CLV ^c	
Aztreonam	
Ceftazidime	
Ceftriaxone	
Gentamicin	
Imipenem	
Levofloxacin	
TMP-SMX ^d	
E. coli	
Omadacycline	
Tigecycline	
Doxycycline	
Tetracycline	
AMX-CLV ^c	
Aztreonam	
Ceftazidime	
Ceftriaxone	
Gentamicin	
Imipenem	
Levofloxacin	
TMP-SMX ^d	
Klebsiella spp.	
Omadacycline	
Tigecycline	
Doxycycline	
Tetracycline	
AMX-CLV ^c	
Aztreonam	
Ceftazidime	
Ceftriaxone	
Gentamicin	
Imipenem	
Levofloxacin	
TMP-SMX ^d	
a. Criteria as publisheb. Tigecycline breakp	
c. AMX-CLV = Amoxi	(
d. TMP-SMX = Trime	ł

RESULTS

• For all *E. coli*, the MIC₉₀s for the 2010 isolates ranged from 1-2 μg/mL and for the 2014 isolates from 2-4 µg/mL (Table 1). MIC₉₀s for ESBL-negative phenotype E. coli ranged from 1-2 µg/mL for both years in both regions (Table 1). ESBLpositive phenotype *E. coli* exhibited MIC₉₀ values of 4 μ g/mL for both years in Europe and 2010 in North America (too few to calculate a MIC_{on} in 2014 [range, 0.5-4 µg/mL for eight isolates]; Table 1).

 For Klebsiella spp. in North America, MIC₉₀ values ranged from 2-4 µg/mL in 2010 and 2014 and in Europe were $\geq 8 \mu g/mL$ (**Table 1**). ESBL-negative phenotype *Klebsiella* spp. exhibited MIC₉₀ values of 2-4 μ g/mL for both years and regions (**Table 1**). ESBL-positive phenotype *Klebsiella* spp. exhibited MIC₉₀ values of ≥ 8 µg/mL in Europe (2010 and 2014; **Table 3**). In North America, the MIC values ranged from 2 - \geq 8 µg/mL (too few to calculate a MIC₉₀ value; **Table 1**).

 Tigecycline was the most active agent (94.0-99.4% susceptible) tested against Enterobacteriaceae for both years (Table 2). Levofloxacin resistance ranged from 17.9-21.6% and trimethoprim-sulfamethoxazole from 26.8-32.2% for both years (Table 2). Susceptibility tended to be lower and MIC_{on} values higher for 2014 isolates for most agents compared to 2010 (Table 2). The agent which exhibited the highest susceptibility, tigecycline, exhibited a higher MIC₉₀ value in 2014 compared to 2010 (MIC₉₀, 0.5 µg/mL, 95.9-99.4% susceptible, 2010; MIC₉₀, 1 µg/mL, 94.0-98.3% susceptible, 2014; **Table 2**).

• For *E. coli*, tigecycline and imipenem exhibited 100.0% susceptibility for both years (Table 2). As was noted for Enterobacteriaceae in general, susceptibility for most agents was decreased in 2014 (MIC₉₀s were increased) compared to 2010 (Table 2). This pattern of decreased susceptibility for most agents was true for ESBL- negative and -positive phenotype E. coli (data not shown).

For *Klebsiella* spp., the most active agents were tigecycline (96.7-100.0%) susceptible, 2010 and 2014) and imipenem (96.7-98.7% susceptible, 2010 and 2014; **Table 2**). Susceptibility was generally decreased in 2014 and MIC_{qns} were generally increased (**Table 2**). Susceptibility was high for most agents (>90.0%) against the ESBL-negative phenotype *Klebsiella* spp. for both years except for tetracycline (82.6-88.6% susceptible), doxycycline (82.6-84.1%) and trimethoprim-sulfamethoxazole (81.8-93.2%; data not shown). Against ESBLpositive phenotype *Klebsiella* spp., tigecycline (87.5-100.0% susceptible) and imipenem (87.5-91.3% susceptible) were the most active agents (data not shown). Susceptibility for other agents was generally poor and susceptibility was decreased in 2014 (data not shown).

Susceptibility: Europe compared to North America

- Tigecycline (94.0-99.3%) and imipenem (91.4-98.9%) were the most active agents tested against the European Enterobacteriaceae isolates (2010 and 2014; Table 3). Susceptibility tended to be slightly lower for 2014 isolates than for 2010 isolates.
- *E. coli* was generally more susceptible than *Klebsiella* spp. (**Table 3**).
- Tigecycline (94.0-99.5%) and imipenem (90.7-99.7%) were the most active agents against all Enterobacteriaceae from North America (2014 and 2010; Table 3). Susceptibility tended to be slightly lower for 2014 than for 2010. E. coli was generally more susceptible than Klebsiella spp. (Table 3).

Table 3. Activity of omadacycline and comparator antimicrobial agents when tested against North American and European urinary tract isolates by year

			North A	America				Europe										
		2014				2010				2014		2010						
CLSIª %S	EUCAST ^a %S	MIC _{50/90}	MIC Range	CLSIª %S	EUCAST ^a %S	MIC _{50/90}	MIC Range	CLSIª %S	EUCAST ^a %S	MIC _{50/90}	MIC Range	CLSIª %S	EUCAST ^a %S	MIC _{50/90}	MIC Range			
		(150)		(377)						(151)			(449)					
-	-	2/≥8	0.5 — ≥8	-	-	1/4	0.25 — >32	-	-	2/≥8	0.25 — ≥8	-	-	1/8	0.25 — >32			
98.7 ^b	94.0	0.12/1	≤0.015 — 4	99.5 ^b	96.0	0.12/0.5	0.06 — 4	98.0 ^b	94.0	0.12/1	≤0.015 — 4	99.3 ^b	95.8	0.12/0.5	≤0.03 — 4			
64.7	-	2/≥16	0.5 — ≥16	74.3	-	1/≥16	0.25 — ≥16	58.3	-	2/≥16	0.25 — ≥16	64.8	-	2/≥16	≤0.06 — ≥16			
62.7	-	2/≥32	0.5 — ≥32	72.7	-	1/≥16	0.5 — ≥16	57.6	-	2/≥32	0.5 — ≥32	60.6	-	2/≥16	≤0.25 — ≥16			
67.3	67.3	4/≥16	≤1 — ≥16	80.1	80.1	4/≥16	≤1 — ≥16	59.6	59.6	8/≥16	≤1 — ≥16	71.7	71.7	8/≥16	≤1 — ≥16			
90.0	88.0	≤0.12/4	≤0.12 — ≥32	93.9	92.8	≤0.12/0.25	≤0.12 — ≥32	78.8	76.2	≤0.12/≥32	≤0.12 — ≥32	88.4	86.6	≤0.12/8	≤0.12 — ≥32			
91.3	88.0	0.12/2	0.03 — >32	94.7	93.1	0.12/0.5	0.03 — >32	83.4	76.2	0.25/16	0.03 — >32	90.2	86.4	0.12/4	0.03 — >32			
87.3	87.3	≤0.06/4	≤0.06 — ≥16	92.6	92.6	≤0.06/0.25	≤0.06 — ≥16	72.2	72.2	≤0.06/≥16	≤0.06 — ≥16	84.9	84.9	≤0.06/≥16	≤0.06 — ≥16			
91.3	88.7	≤1/4	≤1 — ≥16	93.6	93.6	≤1/≤1	≤1 — ≥16	84.8	82.8	≤1/≥16	≤1 — ≥16	88.6	87.8	≤1/≥16	≤1 — ≥16			
90.7	98.7	≤0.12/1	≤0.12 — 4	98.7	99.7	≤0.12/0.5	≤0.12 — 4	91.4	96.0	≤0.12/1	≤0.12 — 4	96.2	98.9	≤0.12/0.5	≤0.12 — ≥16			
82.0	80.7	≤0.12/≥8	≤0.12 — ≥8	81.6	81.4	≤0.5/≥8	≤0.5 — ≥8	74.8	69.5	≤0.12/≥8	≤0.12 — ≥8	78.3	77.0	≤0.5/≥8	≤0.5 — ≥8			
74.0	74.0	≤0.5/≥8	≤0.5 — ≥8	75.9	75.9	≤0.5/≥8	≤0.5 — ≥8	61.6	61.6	≤0.5/≥8	≤0.5 — ≥8	70.8	70.8	≤0.5/≥8	≤0.5 — ≥8			
		(59)				(224)				(79)				(319)				
-	-	0.5/2	0.5 — 4	-	-	0.5/1	0.25 — 4	-	-	1/4	0.25 — ≥8	-	-	0.5/2	0.25 — 8			
100.0 ^b	100.0	0.06/0.12	0.06 — 0.25	100.0 ^b	100.0	0.12/0.25	0.06 — 0.5	100.0 ^b	100.0	0.06/0.12	≤0.015 — 1	100.0 ^b	100.0	0.12/0.25	≤0.03 — 1			
76.3	-	1/≥16	0.5 — ≥16	77.7	-	1/≥16	0.25 — ≥16	62.0	-	2/≥16	0.25 — ≥16	69.9	-	1/≥16	≤0.06 — ≥16			
74.6	-	2/≥32	0.5 — ≥32	75.9	-	1/≥16	0.5 — ≥16	59.5	-	2/≥32	0.5 — ≥32	65.5	-	2/≥16	≤0.25 — ≥16			
86.4	86.4	4/≥16	≤1 — ≥16	81.2	81.2	8/≥16	≤1 — ≥16	78.5	78.5	8/≥16	≤1 — ≥16	79.9	79.9	4/≥16	≤1 — ≥16			
88.1	86.4	≤0.12/16	≤0.12 — ≥32	92.9	92.0	≤0.12/0.5	≤0.12 — ≥32	84.8	82.3	≤0.12/16	≤0.12 — ≥32	93.1	91.2	≤0.12/0.5	≤0.12 — ≥32			
91.5	89.8	0.25/4	0.06 — 32	93.3	92.4	0.12/0.5	0.03 — 32	91.1	84.8	0.25/4	0.03 — 32	94.0	91.2	0.12/0.5	0.03 — >32			
88.1	88.1	≤0.06/≥16	≤0.06 — ≥16	91.5	91.5	≤0.06/0.25	≤0.06 — ≥16	81.0	81.0	≤0.06/≥16/≥16	≤0.06 — ≥16	91.2	91.2	≤0.06/0.25	≤0.06 — ≥16			
88.1	86.4	≤1/≥16	≤1 — ≥16	92.4	92.4	≤1/2	≤1 — ≥16	87.3	84.8	≤1	≤1 — ≥16	92.5	92.2	≤1/2	≤1 — ≥16			
100.0	100.0	≤0.12/≤0.12			100.0	≤0.12/≤0.12	≤0.12 — 0.5	100.0	100.0	≤0.12/≤0.12	≤0.12 — 0.25	100.0	100.0	≤0.12/≤0.12	≤0.12 — 1			
79.7	79.7	≤0.12/≥8	≤0.12 — ≥8	76.3	76.3	≤0.5/≥8	≤0.5 — ≥8	69.6	69.6	≤0.12/≥8	≤0.12 — ≥8	77.0	77.0	≤0.5/≥8	≤0.5 — ≥8			
69.5	69.5	≤0.5/≥8	≤0.5 — ≥8	68.8	68.8	≤0.5/≥8	≤0.5 — ≥8	64.6	64.6	≤0.5/≥8	≤0.5 — ≥8	70.8	70.8	≤0.5/≥8	≤0.5 — ≥8			
		(31) ^E				(103) ^F				(29) ^G				(52) ^H				
-	-	2/2	0.5 — ≥8	-	-	2/4	0.5 — 32	-	-	2/≥8	1 — ≥8	-	-	2/8	8			
100.0 ^b	96.8	0.25/0.25	≤0.015 — 2	100.0 ^b	97.1	0.25/0.5	0.06 — 2	100.0 ^b	96.6	0.25/1	0.12 — 2	98.1 ^b	96.2	0.25/0.5	0.5			
87.1	-	2/≥16	0.5 — ≥16	80.6	-	1/≥16	0.25 — ≥16	51.7	-	2/≥16	0.5 — ≥16	73.1	-	2/≥16	≥16			
87.1	-	1/16	0.5 — ≥32	80.6	-	1/≥16	0.5 — ≥16	62.1	-	2/≥32	0.5 — ≥32	73.1	-	2/≥16	≥16			
96.8	96.8	2/4	≤1 — ≥16	92.2	92.2	2/8	≤1 — ≥16	51.7	51.7	8/≥16	≤1 — ≥16	65.4	65.4	2/≥16	≥16			
93.5	93.5	≤0.12/0.25	≤0.12 — ≥32	95.1	93.2	≤0.12/0.25	≤0.12 — ≥32	55.2	55.2	0.25/≥32	≤0.12 — ≥32	71.2	69.2	≤0.12/≥32	≥32			
93.5	93.5	0.12/0.25	0.06 — >32	97.1	94.2	0.12/0.5	0.03 — >32	65.5	58.6	0.25/>32	0.06 — >32	73.1	73.1	0.12/32	32			
93.5	93.5	≤0.06/0.12	≤0.06 — ≥16	94.2	94.2	≤0.06/0.25	≤0.06 — ≥16	51.7	51.7	0.25/≥16	≤0.06 — ≥16	71.2	71.2	≤0.06/≥16	≥16			
93.5	93.5	≤1/≤1	≤1 — ≥16	96.1	96.1	≤1/≤1	≤1 — ≥16	65.5	65.5	≤1/≥16	≤1 — ≥16	78.8	76.9	≤1/≥16	≥16			
96.8	96.8	≤0.12/0.25	≤0.12 — 4	100.0	100.0	≤0.12/0.25	≤0.12 — 1	96.6	96.6	≤0.12/0.5	≤0.12 — 4	96.2	96.2	≤0.12/0.5	0.5			
93.5	93.5	≤0.12/≤0.12	≤0.12 — ≥8	94.2	94.2	≤0.5/≤0.5	≤0.5 — ≥8	75.9	65.5	0.5/≥8	≤0.12 — ≥8	75.0	71.2	≤0.5/≥8	≥8			
80.6	80.6	≤0.5/≥8	≤0.5 — ≥8	87.4	87.4	≤0.5/≥8	≤0.5 — ≥8	44.8	44.8	≥8/≥8	≤0.5 — ≥8	73.1	73.1	≤0.5/≥8	≥8			
	2015] and EUC/ DA Package Inse		4) used as no CLS	I breakpoint	is available.		e. Or f. Or	ganisms includ ganisms includ	e: Klebsiella ox e: Klebsiella ox	rytoca (4), K. pneum rytoca (25), K. pneum	oniae (27). noniae (78).							

Organisms include: Klebsiella oxytoca (4), K. pneumoniae (25). icillin-clavulanate Organisms include: Klebsiella oxvtoca (7), K. pneumoniae (45), TMP-SMX = Trimethoprim-sulfamethoxazole

ICAAC 2015

JMI Laboratories North Liberty, IA, USA www.jmilabs.com ph. 319.665.3370, fax 319.665.3371 robert-flamm@jmilabs.com

CONCLUSIONS

- Range —>32 03 — 4 6 — ≥16 5 — ≥16 — ≥16 2 — ≥32 —>32 6 — ≥16 — ≥16 2 — ≥16 5 — ≥8 5 — ≥8 5 — 8
- 03 1 6 — ≥16 5 — ≥16 — ≥16 <u>2</u> — ≥32 —>32 6 — ≥16 — ≥16
- 5 ≥8 __≥8

- Omadacycline was active against a wide-range of Enterobacteriaceae isolates causing UTI from North America and Europe between 2010 and 2014.
- Omadacycline was active (MIC₉₀ \leq 4 µg/mL) against *E. coli* regardless of ESBL status. A similar level of activity was observed with Klebsiella species isolated in North America $(MIC_{90}, \leq 4 \mu g/mL)$ however there was less activity observed in Klebsiella isolates from Europe in 2014 (MIC₉₀, \geq 8 µg/mL). Omadacycline was least active against Proteus/Providencia/Morganella species.
- Further clinical study with omadacycline in the treatment of UTI caused by Enterobacteriaceae is indicated.

ACKNOWLEDGEMENT

This study and abstract presentation were funded by a research grant from Paratek Pharmaceuticals. Inc.

REFERENCES

- 1. Clinical and Laboratory Standards Institute (2015). *M07-A10.* Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard- tenth edition. Wayne, PA: CI SI.
- Clinical and Laboratory Standards Institute (2015). *M100-S25.* Performance standards for antimicrobial susceptibility testing: 25th informational supplement. Wayne, PA: CLSI.
- 3. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, Levy SB (2014). Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. *Antimicrob Agents* Chemother 58: 1279-1283.
- 4. EUCAST (2015). Breakpoint tables for interpretation of MICs and zone diameters. Version 5.0, January 2015. Available at: http://www.eucast.org/clinical_breakpoints/. Accessed January 2015.
- 5. Foxman B (2010). The epidemiology of urinary tract infection. *Nat Rev Urol* 7: 653-660.
- Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE (2011). International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. *Clin Infect Dis* 52: e103-e120.
- Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P, Nicolle LE, Infectious Diseases Society of A (2010). Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50: 625-663.
- Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, Tanaka SK, Levy SB (2014). In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. *Antimicrob* Agents Chemother 58: 1127-1135.