ABSTRACT

Background. In preparation for therapeutic use of tigecycline first in class glycycline in Japan, a retrospective sample of clinical isolates (2003-2004) was tested by the SENTRY Antimicrobial Surveillance Program (APS) with reference methods.

Methods. Three university hospitals collected 1,033 pathogens for central laboratory processing by the CLSI procedures (fresh MH broth dilutions in E-test) and broth microdilution (BMD) assays. 27 and 23 comparators were tested including minocycline and tetracycline. Numerous organisms were studied, and MIC90s were included for the following species: E. coli, Klebsiella, Enterobacter, H. influenzae, M. catarrhalis, S. aureus, S. pyogenes, staphylococci, streptococci, viridans group streptococci, P. aeruginosa, A. baumannii, Acinetobacter, and species harboring resistance to other antimicrobial classes. In preparation for therapeutic use of tigecycline (first in class glycylcycline) in Japan, a retrospective sample of clinical isolates was collected from bloodstream infections, skin and soft tissue infections, urinary tract infections and pneumonia in hospitalized patients according to product insert and US-FDA interpretive criteria.

Results. Tigecycline MICs and susceptibility rates among species were compared to known published MIC90s and more potent than either tetracycline or minocycline. The MIC90% range for susceptibility was 0.03-0.5 mg/L. The susceptibility rate for Gram-positive pathogens was 96.2-100.0%. As noted here and cited in the results, prior studies have reported reduced susceptibility to vancomycin in Japan.

Conclusions: The susceptibility rates were identical between sampled years and more potent than either tetracycline or minocycline. Tigecycline appears to be active against current serious infections of infecting strains tested in Japan. This study was supported by an educational/research grant from Wyeth Pharmaceuticals.

ACKNOWLEDGMENTS

This study was supported by an educational/research grant from Wyeth Pharmaceuticals.

SELECTED REFERENCES

ABSTRACT

Background. In preparation for therapeutic use of tigecycline first in class glycycline in Japan, a retrospective sample of clinical isolates (2003-2004) was tested by the SENTRY Antimicrobial Surveillance Program (APS) with reference methods.

Methods. Three university hospitals collected 1,033 pathogens for central laboratory processing by the CLSI procedures (fresh MH broth dilutions in E-test) and broth microdilution (BMD) assays. 27 and 23 comparators were tested including minocycline and tetracycline. Numerous organisms were studied, and MIC90s were included for the following species: E. coli, Klebsiella, Enterobacter, H. influenzae, M. catarrhalis, S. aureus, S. pyogenes, staphylococci, streptococci, viridans group streptococci, P. aeruginosa, A. baumannii, Acinetobacter, and species harboring resistance to other antimicrobial classes. In preparation for therapeutic use of tigecycline (first in class glycylcycline) in Japan, a retrospective sample of clinical isolates was collected from bloodstream infections, skin and soft tissue infections, urinary tract infections and pneumonia in hospitalized patients according to product insert and US-FDA interpretive criteria.

Results. Tigecycline MICs and susceptibility rates among species were compared to known published MIC90s and more potent than either tetracycline or minocycline. The MIC90% range for susceptibility was 0.03-0.5 mg/L. The susceptibility rate for Gram-positive pathogens was 96.2-100.0%. As noted here and cited in the results, prior studies have reported reduced susceptibility to vancomycin in Japan.

Conclusions: The susceptibility rates were identical between sampled years and more potent than either tetracycline or minocycline. Tigecycline appears to be active against current serious infections of infecting strains tested in Japan. This study was supported by an educational/research grant from Wyeth Pharmaceuticals.

ACKNOWLEDGMENTS

This study was supported by an educational/research grant from Wyeth Pharmaceuticals.

SELECTED REFERENCES

ABSTRACT

Background. In preparation for therapeutic use of tigecycline first in class glycycline in Japan, a retrospective sample of clinical isolates (2003-2004) was tested by the SENTRY Antimicrobial Surveillance Program (APS) with reference methods.

Methods. Three university hospitals collected 1,033 pathogens for central laboratory processing by the CLSI procedures (fresh MH broth dilutions in E-test) and broth microdilution (BMD) assays. 27 and 23 comparators were tested including minocycline and tetracycline. Numerous organisms were studied, and MIC90s were included for the following species: E. coli, Klebsiella, Enterobacter, H. influenzae, M. catarrhalis, S. aureus, S. pyogenes, staphylococci, streptococci, viridans group streptococci, P. aeruginosa, A. baumannii, Acinetobacter, and species harboring resistance to other antimicrobial classes. In preparation for therapeutic use of tigecycline (first in class glycylcycline) in Japan, a retrospective sample of clinical isolates was collected from bloodstream infections, skin and soft tissue infections, urinary tract infections and pneumonia in hospitalized patients according to product insert and US-FDA interpretive criteria.

Results. Tigecycline MICs and susceptibility rates among species were compared to known published MIC90s and more potent than either tetracycline or minocycline. The MIC90% range for susceptibility was 0.03-0.5 mg/L. The susceptibility rate for Gram-positive pathogens was 96.2-100.0%. As noted here and cited in the results, prior studies have reported reduced susceptibility to vancomycin in Japan.

Conclusions: The susceptibility rates were identical between sampled years and more potent than either tetracycline or minocycline. Tigecycline appears to be active against current serious infections of infecting strains tested in Japan. This study was supported by an educational/research grant from Wyeth Pharmaceuticals.