OXA- and MßL-type Enzymes among Uncommonly Isolated Acinetobacter spp. in Asia-Pacific Nations: Natural Reservoir for Resistance Determinants RE MENDES, JM BELL, JD TURNIDGE, M CASTANHEIRA, RN JONES JMI Laboratories, North Liberty, IA, USA; Women's and Children's Hospital, Adelaide, Australia

AMENDED ABSTRACT

Background: Acinetobacter spp. other than A. baumannii are occasionally recovered from clinical sources, but carbapenem-hydrolyzing class D β -lactamases (CHCD β) and metallo- β -lactamase (M β L) genes have rarely been reported. The aim of this study was to identify and characterize OXA and M β L genes in Acinetobacter spp. Gene context of bla_{OXA-23} -like, namely $bla_{OXA-133}$, detected in A. radioresistens was also evaluated.

Methods: Acinetobacter spp. recovered from patients in 10 countries in the Asia-Pacific (APAC) region were tested by broth microdilution. Isolates with imipenem or meropenem MIC ≥ 8 mg/L were screened for MBL- (IMP-like, VIM-like, SIM-1, GIM-1, SPM-1) and OXA- (OXA-23, -24, -58 clusters) genes. CHCDB genes and surrounding sequences were assessed by PCR using primers targeting to ISAba1, 2 or 3, or degenerate primer approach. Southern blot and hybridization of chromosomal and plasmid DNA were performed. RNA extraction followed by reverse transcriptase-PCR was performed to access expression of *bla*_{OXA-133}. Species identification was confirmed by 16S rRNA. **Results:** Among 581 *Acinetobacter* spp. isolates, 26.0% carried CHCDB or MBL (0.35%) genes, from which 0.7% were found in Acinetobacter spp. other than A. baumannii. An A. junii with bla_{OXA-23} and an A. radioresistens with bla_{OXA-133} and bla_{OXA-58} were detected in 2 Indian centers, while an A. johnsonnii with bla_{IMP-4} and A. calcoaceticus with bla_{OXA-58} were identified in the Philippines and China, respectively. ISAba1 and ISAba3 surrounded bla_{OXA-23} from A. johnsonnii and bla_{OXA-58} from A. radioresistens and A. calcoaceticus, respectively. The A. radioresistens showed a putative O-sialoglycoprotein endopeptidase-encoding gene upstream of *bla*_{OXA-133}; *bla*_{OXA-133} transcriptional levels were very low; and bla_{OXA-133} and bla_{OXA-58} were located on the chromosome and plasmid, respectively. Susceptibility to polymyxin and tigecycline ($\leq 2 \text{ mg/L}$; no breakpoint criteria) was ≥98.9%.

Table 1.	Activity of antimicrobial agents tested against 581 Acinetobacter spp. isolates recovered from APAC region during 2006-2007 ^a .				
Antimicrobi	al agent	MIC ₅₀	MIC	Range	% susceptible/resistant ^b

Antimicrobial agent	NIC_{50}	IVIIC ₉₀	Range	% susceptible/resistant
Ampicillin/sulbactam	>16	>16	≤2->16	42.5 / 51.6
Ceftazidime	>16	>16	≤1->16	37.5 / 61.0
Cefepime	>16	>16	≤0.25->16	37.3 / 55.8
Imipenem	2	>8	≤0.12->8	59.6 / 37.4
Meropenem	2	>8	≤0.12->8	58.5 / 39.4
Levofloxacin	>4	>4	≤0.5->4	38.3 / 50.6
Amikacin	>32	>32	≤4->32	44.4 / 53.8
Gentamicin	>8	>8	≤2->8	36.9 / 63.9
Tigecycline	0.5	1	≤0.03->4	98.8 / 1.2
Polymyxin B	≤0.5	1	≤0.5->4	99.1 / 1.0

Figure 1. (A) Lanes 1 and 2 represent plasmid DNAs from E. coli strains V517 (NCTC 50193) and 39R861 (NCTC 50192) used as molecular size marker, respectively. Lane 3 represents plasmid DNAs from A. radioresistens clinical isolate 251-39C. (B) Southern hybridization performed with a bla_{OXA-58}-specific probe. Lane 1 represents the positive control. Lane 2 represents the bla_{0XA} ₅₈-positive signals (horizontal arrows) obtained with 54-, 35- and 5.6-kb plasmid DNAs from A. radioresistens 251-39C. Lane 3 represents the negative control.

Conclusion: High dissemination of CHCDß genes was detected, emphasizing their ability to spread among *Acinetobacter* spp. The data suggest *A. radioresistens* may be a natural reservoir for *bla*_{OXA-23}-like genes. *bla*_{IMP-4} has been previously detected in Hong Kong, Australia and now Philippines, highlighting spread in APAC.

INTRODUCTION

Acinetobacter spp. are opportunistic pathogens, frequently associated with patients having immuno-suppression, serious underlying diseases or invasive procedures and use of broad-spectrum antimicrobial agents. Recently, several reports have described the association of these pathogens with numerous outbreaks and a corresponding increase in resistance rates. As such, carbapenems are important therapeutic options for treating infections caused by *Acinetobacter* spp.; however, these antimicrobial agents may be hydrolyzed by Ambler class B metallo- β -lactamases (MBL) as well as carbapenem-hydrolyzing class D β -lactamases (CHCD β). a. Includes 428 non-oxacillinase- and MßL-producing isolates, 151 oxacillinase-producing isolates and 2 MßL-producing isolates.

b. According to CLSI M100-S18, except for tigecycline, which was determined according to the Enterobacteriaceae breakpoints approved by the USA-FDA (breakpoint for susceptibility, ≤2 mg/L; breakpoint for resistance, ≥8 mg/L).

Bacterial isolate	Enzyme	No. of isolates	Medical centre	Clones ^a (No. of isolates)	Country
A. baumannii	OXA-23	4	204	A (4)	Hong Kong
		20	217	A (16), B (2), C (2)	Singapore
		6	218	A (6)	China
		15	224	A (12), B (1), C (1), D (1)	Korea
		9	225	A (2), B (3), C (3), D (1)	Korea
		15	226	A (1), B (4), C (1), D (3), E (1), F (1), G (1), H (1), I (1), J (1)	Thailand
		8	227	A (1), B (4), C (3)	Thailand
		9	231	A (6), A1 (1), A2 (1), A3 (1)	China
		1	238	ND ^b (1)	China
		7	243	A (3), B (2), C (1), D (1)	India
		26	248	A (2), B (2), C (1), D (1), E (1), F (1), G (7),G1 (1), H (2), I (1), K (1), NT ^c (6)	India
		4	252	A (1), B (1), C (1), D (1)	India
		2	246	A (1), B (1)	India
A. junii		1	246	ND ^b (1)	India
A. baumannii	OXA-24	2	223	A (2)	Taiwan
		2	226	A (1), B (1)	Thailand
		1	242	ND ^b (1)	Indonesia
A. baumannii	OXA-58	2	232	A (2)	China
A. calcoaceticus	OXA-58	1	234	ND ^b (1)	China
A. baumannii	OXA-23 and -58	11	231	A (10), A1 (1)	China
A. radioresistens	OXA-133 and -58	1	251	ND ^b (1)	India
A. baumannii	OXA-24 and -58	1	226	ND ^b (1)	Thailand
A. baumannii	OXA-23, -24 and -58	3	226	A (3)	Thailand

Six groups of acquired MßL-encoding genes have been identified; however, only bla_{IMP} - and bla_{VIM} -like, and more recently bla_{SIM-1} have been reported in *Acinetobacter* spp. Conversely, acquired CHCDB-encoding genes have been more frequently detected in *Acinetobacter* spp. and are clustered in three major subfamilies, bla_{OXA-23} -, bla_{OXA-24} - and bla_{OXA-58} -types. The objective of this surveillance study was to evaluate the occurrence of acquired CHCDB- and MßL-encoding genes among *Acinetobacter* spp. isolates recovered from medical centres in the Asia-Pacific (APAC) region. Additionally, we wished to further characterize a novel bla_{OXA-23} -like gene, namely $bla_{OXA-133}$, and bla_{OXA-58} detected concurrently in an *A. radioresistens* clinical isolate recovered from a patient in India.

MATERIALS AND METHODS

Bacterial isolates: During 2006-2007, 41 medical centers located in 10 countries in the APAC region were recruited to participate to the SENTRY Program. Species identification was performed by standard biochemical tests and Vitek System (bioMérieux; Hazelwood, Missouri, USA), when necessary. Additionally, species identification was confirmed by sequencing of the 16S ribosomal RNA gene.

Antimicrobial susceptibility testing: Isolates were tested for susceptibility by the broth microdilution procedure and interpretative criteria described by the CLSI; 2006.

Carbapenem hydrolyzing class D ß-lactamase- (CHCDß) and MßLencoding gene detection: Isolates non-susceptible to imipenem or meropenem (MIC, \geq 8 mg/L) were PCR-screened for acquired CHCDß (bla_{OXA-23}^{-} , bla_{OXA-24}^{-} , bla_{OXA-51}^{-} and bla_{OXA-58}^{-} -like) and MßL. Amplicons were sequenced on both strands. a. Indicates the number of clones carrying oxacillinase-encoding genes within each participating medical centre.

b. ND reads "Not Determined", only one isolate.

c. Not typeable.

Table 3.	bla _{OXA-133} and bla _{OXA-58} transcriptional levels analysis.					
			Relative expression/	Overexpression		
Target gene	Strain	C_T^{a}	target vs. reference geneb	ratio ^c		
bla _{OXA-133}	251-39C	34.74	3.97e-08	1667		
bla _{OXA-58}	251-39C	24.00	6.62e-05			
16S rRNA	251-39C	10.91				

a. C_{τ} (critical threshold cycle) numbers represent an average from triplicate tests and were determined by the detection system software.

b. Relative expression = $2^{-\Delta\Delta T}$, where $T = C_{T \text{ target}} - C_{T \text{ reference}}$.

c. Ratio between relative expression levels of the target genes (bla_{OXA-58}/bla_{OXA-133}).

Among the isolates, 267 (46.0%) were non-susceptible (MIC, $\geq 8 \text{ mg/L}$) to imipenem or meropenem.

Among the carbapenem non-susceptible isolates, CHCDB and MBL genes were detected in 56.5% (151 isolates) and 0.8% of the isolates (two isolates), respectively. *bla*_{OXA-23} was the most common gene, which accounted for 94.0% of the CHCDB-encoding genes detected, followed by *bla*_{OXA-58} (13.2%) and *bla*_{OXA-24} (6.6%).

CONCLUSIONS

- This study showed low susceptibility rates among *Acinetobacter* spp. for most clinically available antimicrobial agents, except for polymyxin B and tigecycline.
- A. radioresistens harbored a chromosomally located bla_{OXA-133}, suggesting this bacterial species as the source of bla_{OXA-23}-clusters. In addition, this strain harbored several plasmid DNAs, which included three different bla_{OXA-58}-carrying plasmids.
- The transcriptional levels of bla_{OXA-133} were much lower when compared with those of concurrently present bla_{OXA-58}. These results were expected (i) due to the lack of promoter upstream of bla_{OXA-133}, (ii) presence of multiple copies of bla_{OXA-58} and (iii) the presence of ISAba3 upstream of the bla_{OXA-58}, which provides a promoter and consequently enhances gene expression.

Resistance gene location, plasmid analysis and hybridization: Total DNA from *A. radioresistens* clinical isolate (251-39C) was restriction digested with I-Ceu-I and DNA fragments and plasmids were transferred onto a nylon membrane by Southern blot. Specific labeled probes for $bla_{OXA-133}$, bla_{OXA-58} and 16S rRNA were used for hybridization.

Upstream DNA sequences and quantification of transcriptional levels of $bla_{OXA-133}$ and bla_{OXA-58} in *A. radioresistens*: The upstream DNA sequences of the bla_{OXA-58} and $bla_{OXA-133}$ in *A. radioresistens* 251-39C were characterized by PCR using primers targeting ISAba1, 2 or 3, or a degenerate primer approach. Quantification of the transcriptional levels of $bla_{OXA-133}$ and bla_{OXA-58} were evaluated by quantitative real-time PCR (qRT-PCR).

Molecular typing: Clinical isolates were typed by PFGE.

RESULTS

- A total of 581 Acinetobacter spp. were recovered during 2006-2007. The vast majority were A. baumannii (94.3%), followed by A. junii (2.6%), A. Iwoffii (1.7%), A. haemolyticus (0.3%), A. johnsonii (0.3%), A. calcoaceticus (0.2%) and A. radioresistens (0.2%).
- Polymyxin-B (99.1% susceptible) and tigecycline (98.9% susceptible) were the most active agents tested (Table 1).

- A new bla_{OXA-23}-like gene, namely bla_{OXA-133}, was detected in an *A. radioresistens* (251-39C). The putative amino acid sequence of OXA-133 showed highest identity with OXA-102 (99.6%). MBL-encoding genes were detected in one *A. johnsonii* recovered from the Philippines (bla_{IMP-4}) and one *A. baumannii* recovered from Korea (bla_{VIM-2}).
- *A. radioresistens* showed multiple plasmids. The *bla*_{OXA-58}specific probe hybridized with 54-, 35- and 5.6-kb plasmid DNAs (Figure 1). *bla*_{OXA-133}-specific probe hybridized with the 1050-kb *A. radioresistens* total DNA fragment after I-Ceu-I restriction digestion (data not shown).
- ISAba3 was detected upstream of *bla*_{OXA-58} gene in the *A. radioresistens* isolate. DNA sequencing of the upstream region of *bla*_{OXA-133} showed highest identity with a putative O-sialoglycoprotein endopeptidase-encoding gene. No putative promoter was located in this region and a truncated *ATPase* gene was located downstream.
- Transcriptional levels of $bla_{OXA-133}$ (mean $C_T = 34.74$) were 1667-fold lower than that of bla_{OXA-58} (mean $C_T = 24.00$; Table 3).
- Clonal dissemination of bla_{OXA-23}-carrying A. baumannii was noted in medical centres 204, 217, 218, 224 and 231; while bla_{OXA-23}-carrying A. baumannii from the remaining centres were genetically unrelated (Table 2). Among bla_{OXA-24}-carrying A. baumannii recovered from Taiwan and Thailand, dissemination of related and unrelated clinical isolates was noted, respectively.

- The detection of bla_{VIM-2} and bla_{IMP-4} in South Korea and the Philippines, respectively, underscores their continue presence in these regions, albeit at low frequency.
- This study emphasizes (i) the natural occurrence of B-lactam resistance genes among environmental Acinetobacter species, (ii) the ability for exchanging foreign DNA and (iii) the diversity of resistance genes in the hospital setting.

SELECTED REFERENCES

- . Clinical and Laboratory Standards Institute. (2006). *M7-A7, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard seventh edition.* Wayne, PA: CLSI.
- 2. Clinical and Laboratory Standards Institute. (2008). *M100-S18, Performance standards for antimicrobial susceptibility testing, 18th informational supplement*. Wayne, PA: CLSI.
- 3. Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, Pignatari AC, Tufik S (2007). Rapid detection and identification of metallo-ß-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. *J Clin Microbiol* 45: 544-547.
- 4. Mendes RE, Fritsche TR, Sader HS, Jones RN (2008). Increased antimicrobial susceptibility profile among polymyxin-resistant *Acinetobacter baumannii* clinical isolates. *Clin Infect Dis* 46: 1324-1326.
- Peleg AY, Franklin C, Bell JM, Spelman DW (2005). Dissemination of the metallo-ßlactamase gene bla_{IMP-4} among Gram-negative pathogens in a clinical setting in Australia. *Clin Infect Dis* 41: 1549-1556.
- 6. Poirel L, Nordmann P (2006). Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene *bla*_{OXA-58} in *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 50: 1442-1448.
- Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. *Int J Antimicrob Agents* 27: 351-353.