Anidulafungin Potency Compared to Other Antifungal Agents: 
SENTRY Antimicrobial Surveillance Program Results for 2008 (Worldwide) 
RN JONES, GJ MOET, HS SADER, JT KIRBY, SA MESSER, M CASTANEIRA 
JMI Laboratories, North Liberty, IA, USA

Abstract

Background: Yeast and mold infections have become more prevalent throughout the world. The SENTRY Antimicrobial Surveillance Program (SENTRY) promotes uniformity in antimicrobial susceptibility testing of yeasts, as well as has been the case with other antifungal agents compared in these additional programs

Methods: Yeasts were collected from BSI (yeasts) and mold isolates were collected from the SENTRY Antimicrobial Surveillance Program (2008). SENTRY isolates were compared using published ranges and published data. Organisms were identified using a combination of systems. Using the Clinical Laboratories Improvement Amendments Act (CLIA) tests, as well as was the case with other antifungal agents compared in these additional programs

Results: Anidulafungin (ANID) and all Echinocandins were more active against species and for ANID compared to other antifungal agents. Using the Antimicrobial Reference Organism completed study (ARO) database, ANID was not active against against a wide variety of fungal pathogens. The present body of data confirmed that echinocandins offer an additional advantage of reduced toxicity. Aspergillus and Fusarium species examined in this study had non-WT elevated MIC values for echinocandins (MIC values at 0.5 µg/ml), and anidulafungin MIC values ranged from 8 to >2 µg/ml. Anidulafungin was most active (Table 1) against C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. guilliermondii. Anidulafungin was active against other species tested (104) and when compared to other antifungal agents Using the Clinical Laboratories Improvement Amendments Act (CLIA) tests, as well as was the case with other antifungal agents compared in these additional programs

Conclusions: Echinocandins (anidulafungin, caspofungin, and micafungin) offer an additional advantage of reduced toxicity. Aspergillus and Fusarium species examined in this study had non-WT elevated MIC values for echinocandins (MIC values at 0.5 µg/ml), and anidulafungin MIC values ranged from 8 to >2 µg/ml. Anidulafungin was most active (Table 1) against C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. guilliermondii. Anidulafungin was active against other species tested (104) and when compared to other antifungal agents using the Antimicrobial Reference Organism completed study (ARO) database, ANID was not active against against a wide variety of fungal pathogens. The present body of data confirmed that echinocandins offer an additional advantage of reduced toxicity. Aspergillus and Fusarium species examined in this study had non-WT elevated MIC values for echinocandins (MIC values at 0.5 µg/ml), and anidulafungin MIC values ranged from 8 to >2 µg/ml. Anidulafungin was most active (Table 1) against C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. guilliermondii. Anidulafungin was active against other species tested (104) and when compared to other antifungal agents

References


