Oritavancin Activity Against Gram-Positive Clinical Isolates Responsible for Documented Skin and Skin Structure Infections in the United States

R.E. Mendes, H.S. Sader, R.K. Flamm, D.J. Farrell, R.N. Jones
JMI Laboratories, North Liberty, Iowa, USA

Presented at IDWeek 2014, October 8-12, 2014, Philadelphia, PA

Amended Abstract

Background: Oritavancin (ori) was recently approved in the USA for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) caused by Gram-positive pathogens. Oritavancin activity was assessed against contemporary isolates causing SSIs.

Methods: 3,677 isolates were obtained from SENTRY Antimicrobial Surveillance Program (2012-2013) sites in 34 sites in Europe, Israel and Turkey as part of the SENTRY Antimicrobial Surveillance Program (2012-2013); Bacteria were identified by automated methods and MALDI-TOF. Susceptibility testing was performed by CLSI methods (M12-A9) and interpreted by CLSI standards. Oritavancin MIC interpretations for oritavancin were based on breakpoint criteria recommended by CLSI (M100-S24). Performance standards for antimicrobial susceptibility test methods. A total of 3,677 isolates were obtained from SENTRY Antimicrobial Surveillance Program (2012-2013) sites in 34 sites in Europe, Israel and Turkey as part of the SENTRY Antimicrobial Surveillance Program (2012-2013); Bacteria were identified by automated methods and MALDI-TOF. Oritavancin MIC interpretations for oritavancin were based on breakpoint criteria recommended by CLSI (M100-S24). Performance standards for antimicrobial susceptibility test methods.

Results: Oritavancin MIC50/90 values against CoNS were ≤0.06/0.12 µg/ml, 98.7% susceptible, against S. aureus, the highest oritavancin MIC value was 0.06 µg/ml; 100.0% susceptible; Tables 1 and 2).

Conclusions: Oritavancin exhibited excellent activity against CoNS, S. agalactiae, and 100.0% susceptible against S. aureus, which the highest oritavancin MIC value was 0.06 µg/ml (Tables 1 and 2).

References


2. Table 1. Antimicrobial activity in vitro and MIC distribution for oritavancin against a contemporary collection of clinical isolates causing SSIs

3. Table 2. Antimicrobial activity of oritavancin and comparator agents in vitro against a contemporary collection of clinical isolates responsible for SSIs

4. Table 3. Antimicrobial activity of oritavancin and comparator agents in vitro against a contemporary collection of clinical isolates responsible for SSIs

Tables

<table>
<thead>
<tr>
<th>Organism (no. tested)</th>
<th>MIC (µg/ml)</th>
<th>% Susceptible/Intermediate/Resistanta</th>
<th># of isolated resistant agents</th>
<th># of isolated susceptible agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pyogenes (326)</td>
<td>≤0.03/≤0.06</td>
<td>100.0 / 0.0 / 0.0</td>
<td>0</td>
<td>326</td>
</tr>
<tr>
<td>S. dysgalactiae (326)</td>
<td>≤0.03/≤0.06</td>
<td>100.0 / 0.0 / 0.0</td>
<td>0</td>
<td>326</td>
</tr>
</tbody>
</table>

Disclosures/Acknowledgments

This study was sponsored by an educational grant from Janssen Biotech, Inc., Horsham, Pennsylvania, USA. The content of this presentation is based on JMI Laboratories’ review of the published scientific literature. The content is not intended to serve as medical, legal, or ethical advice. The opinions and conclusions expressed in this presentation do not necessarily reflect those of the sponsors of this meeting.

References


3. Table 1. Antimicrobial activity in vitro and MIC distribution for oritavancin against a contemporary collection of clinical isolates causing SSIs

4. Table 2. Antimicrobial activity of oritavancin and comparator agents in vitro against a contemporary collection of clinical isolates responsible for SSIs

5. Table 3. Antimicrobial activity of oritavancin and comparator agents in vitro against a contemporary collection of clinical isolates responsible for SSIs

6. References


8. Table 1. Antimicrobial activity in vitro and MIC distribution for oritavancin against a contemporary collection of clinical isolates causing SSIs

9. Table 2. Antimicrobial activity of oritavancin and comparator agents in vitro against a contemporary collection of clinical isolates responsible for SSIs

10. Table 3. Antimicrobial activity of oritavancin and comparator agents in vitro against a contemporary collection of clinical isolates responsible for SSIs