IDWeek 2017 Poster #1226

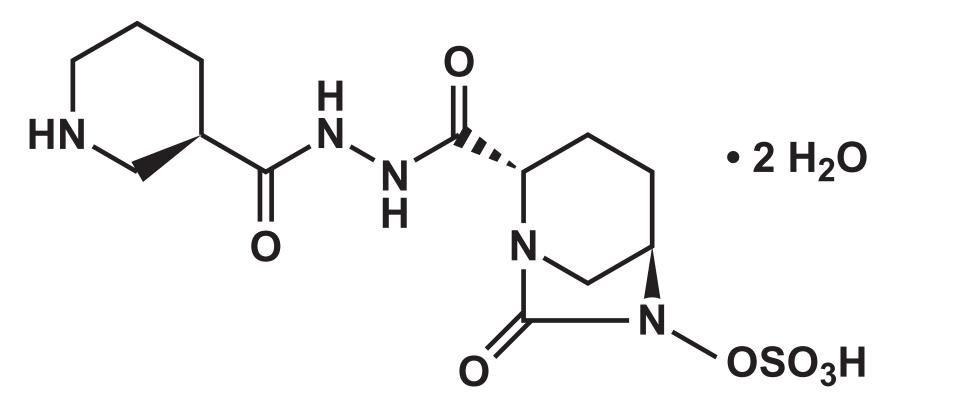
Cefepime-Zidebactam (WCK 5222) Activity Tested against Gram-Negative **Organisms Causing Bloodstream Infections Worldwide** HS SADER, M CASTANHEIRA, JM STREIT, LR DUNCAN, RK FLAMM JMI Laboratories, North Liberty, Iowa, USA

Abstract

Background: Zidebactam (ZID), a bicyclo-acyl hydrazide, is a β -lactam enhancer with a dual mechanism of action involving selective and high binding affinity to gramnegative (GN) PBP2 and β -lactamase inhibition. We evaluated the *in vitro* activity of cefepime (FEP) combined with ZID against GN organisms causing bloodstream infections (BSI) in hospitals worldwide.

Methods: A total of 2,094 isolates from 105 medical centers were evaluated. Isolates were collected from Europe (1,050), the US (331), Latin America (LA; 200), and the Asia-Pacific region (AP; 393) in 2015, and China (120) in 2013 by the SENTRY Program. Susceptibility (S) testing was performed by reference broth microdilution method against FEP-ZID (1:1 ratio) and comparators. The collection included 1,809 Enterobacteriaceae (ENT), 170 P. aeruginosa (PSA), and 115 Acinetobacter spp. (ASP).

Results: FEP-ZID was very active against ENT (MIC_{50/90} of $\leq 0.03/0.12 \,\mu g/mL$) with 99.9 and 100.0% of isolates inhibited at $\leq 4/4$ and $\leq 8/8 \mu g/mL$, respectively, and retained potent activity against carbapenem-resistant (CRE; n=44; MIC_{50/90}, 1/4 µg/mL), multidrug-resistant (MDR), and extensively drug-resistant (XDR) isolates (Table). Amikacin (AMK; MIC_{50/90}, 2/4 µg/mL; 97.7% S) was also very active against ENT, and collistin (COL; MIC_{50/00}, 0.12/>8 μ g/mL) inhibited only 87.3% of isolates at ≤2 µg/mL. FEP-ZID was highly active against PSA, including isolates resistant to other antipseudomonal β -lactams, MDR (MIC_{50/90}, 4/8 µg/mL), and XDR (MIC_{50/90}, 4/8 µg/mL) isolates. Among the comparators, COL (MIC_{50/90} of $\leq 0.5/1 \mu g/mL$; 100.0% S) and AMK (MIC_{50/90}, 4/16 µg/mL; 91.2% S) were the most active agents against PSA. FEP-ZID (MIC_{50/90}, 16/32 μ g/mL) was 4-fold more active than FEP against ASP.


Conclusions: FEP-ZID (WCK 5222) exhibited potent *in vitro* activity against a large worldwide collection of GN isolates from BSI, including MDR and XDR isolates. These results support further clinical development of WCK 5222 for treating BSI.

	MIC _{50/90} (% at ≤8 µg/mL)	MIC _{50/90} in μg/mL (%S)					
Organism	FEP-ZID	FEP	CAZ	P/T	MEM		
ENT (1,809)	≤0.03/0.12 (100.0)	0.06/32 (82.4)	0.25/32 (81.1)	2/32 (89.0)	0.03/0.06 (97.3)		
MDR (216)	0.12/1 (100.0)	32/>64 (17.6)	>32/>32 (19.0)	32/>64 (39.8)	0.06/>32 (77.8)		
XDR (37)	1/4 (100.0)	>64/>64 (5.4)	>32/>32 (0.0)	>64/>64 (0.0)	32/>32 (5.4)		
PSA (170)	2/4 (98.8)	4/32 (80.6)	2/32 (78.2)	4/64 (79.4)	1/16 (69.4)		
CAZ-NS (37)	4/8 (94.6)	16/>64 (18.9)	32/>32 (0.0)	64/>64 (16.2)	16/>32 (18.9)		
P/T-NS (35)	4/8 (94.3)	16/>64 (25.7)	32/>32 (11.4)	64/>64 (0.0)	16/>32 (20.0)		
MEM-NS (52)	4/8 (96.2)	8/>64 (50.0)	16/>32 (42.3)	32/>64 (46.2)	16/>32 (0.0)		
ASP (115)	16/32 (49.6)	64/>64 (34.8)	>32/>32 (33.0)	>64/>64 (33.3)	32/>32 (42.6)		
CAZ, ceftazidime; P/T, piperacillin/tazobactam; MEM, meropenem; NS, non susceptible							

Introduction

- Zidebactam, a bicyclo-acyl hydrazide ($C_{13}H_{21}N_5O_7S$ [Figure 1]), is a non- β -lactam agent with a dual mechanism of action involving selective and high-affinity gram-negative penicillin-binding protein 2 (PBP2) binding and β-lactamase inhibition
- Due to PBP2 binding, zidebactam demonstrates antibacterial activity against various Enterobacteriaceae and Pseudomonas aeruginosa isolates
- Cefepime is a parenteral fourth-generation oxyimino-cephalosporin with broad-spectrum activity against aerobic gram-positive and gram-negative bacteria, including *P. aeruginosa*, that was initially approved by the United States Food and Drug Administration (US FDA) in 1997

Figure 1 Chemical structure of zidebactam

- bloodstream infections

Materials and Methods

Organism collection

- Acinetobacter spp. isolates
- China (120 isolates from 10 medical centers)

Susceptibility testing

- aeruginosa ATCC 27853

to amikacin; data not shown)

 Clinical indications currently approved by the US FDA for treatment with cefepime include moderate to severe pneumonia, complicated and uncomplicated urinary tract infections, complicated intra-abdominal infections, and uncomplicated skin and skin structure infections, as well as empiric therapy for febrile neutropenic patients

• Zidebactam combined with cefepime (WCK 5222) displays potent activity against several multidrug-resistant (MDR) pathogens, including P. aeruginosa and Acinetobacter baumannii

• It has been demonstrated that zidebactam driven "enhancer" action leads to rapid cidality due to binding to multiple PBPs

WCK 5222 is under clinical development for treating gram-negative infections (NCT02707107 and NCT02674347; www.clinicaltrials.gov)

• We evaluated the *in vitro* activity of cefepime combined with zidebactam against a large worldwide collection of gram-negative organisms isolated from patients hospitalized with

• 2,094 isolates were collected as part of a global surveillance program, mostly in 2015 (except those from China collected in 2013)

• The organism collection included 1,809 Enterobacteriaceae, 170 P. aeruginosa, and 115

 Isolates were consecutively collected from 105 medical institutions worldwide, including the United States (US; 331 isolates from 36 medical centers), Europe (1,050 isolates from 37 medical centers), Latin America (200 isolates from 8 medical centers), the Asia-Pacific (APAC) region (excluding China, 393 isolates from 14 medical centers), and

• Each participating center was requested to collect consecutive bacterial isolates from bloodstream infections (1/patient) determined to be clinically significant by local criteria

 MIC values were determined using Clinical and Laboratory Standards Institute (CLSI) broth microdilution methodology as described in CLSI document M07-A10 (2015)

The combination of cefepime-zidebactam (WCK 5222; tested at ratio concentrations of 1:1), both compounds alone, and various comparator agents were tested in 96-well frozen-form panels produced by JMI Laboratories (North Liberty, Iowa, USA)

 Cefepime breakpoint for high dose (2g q8hs; CLSI), ie, ≤8 µg/mL, was applied for cefepime-zidebactam for comparison purposes only. However, a pharmacokinetic/ pharmacodynamic (PK/PD) susceptible breakpoint of ≤64 µg/mL has been proposed based on the results of phase 1 studies where 2g of cefepime plus 1g of zidebactam q8 hours provided >99% PK/PD target attainment for *Enterobacteriaceae*, *P. aeruginosa*, and *A. baumannii* isolates with cefepime-zidebactam MICs up to 64 µg/mL (Wockhardt data on file)

 Tested QC strains included Escherichia coli ATCC 25922, ATCC 35218, and NCTC 13353; Klebsiella pneumoniae ATCC 700603 and ATCC BAA 1705; and Pseudomonas

Results

 Cefepime-zidebactam was the most active combination tested against Enterobacteriaceae with MIC_{50/90} results of ≤0.03/0.12 µg/mL and 100.0% inhibited at <8/8 µg/mL (Tables 1–3 and Figure 2)

 Amikacin (MIC_{50/90}, 2/4 μg/mL; 97.7% susceptible), doripenem (MIC_{50/90}, ≤0.06/ 0.12 μg/mL; 97.4% susceptible), meropenem (MIC_{50/90}, 0.03/0.06 μg/mL; 97.3% susceptible), and imipenem (MIC_{50/90}, ≤0.12/0.5 µg/mL; 94.5% susceptible) were also very active against *Enterobacteriaceae* (Table 3), but these compounds exhibited limited activity against carbapenem-resistant Enterobacteriaceae (CRE; only 54.5% susceptible

- Cefepime-zidebactam was active against individual *Enterobacteriaceae* species (MIC₅₀, and ceftazidime-nonsusceptible *Enterobacter* spp. (MIC_{50/90}, 0.12/0.5 µg/mL; Table 1)
- Cefepime-zidebactam was very active against P. aeruginosa with MIC_{50/90} results of 2/4 μ g/mL and 98.8% of isolates inhibited at \leq 8/8 μ g/mL; highest MIC, 16/16 μ g/mL (Tables 1–3 and Figure 2)
- Among the comparators, colistin (MIC_{50/00} of $\leq 0.5/1 \mu g/mL$; 100.0% susceptible) and amikacin (MIC_{50/90}, 4/16 µg/mL; 91.2% susceptible) were the most active compounds against *P. aeruginosa* (Table 3)
- and retained potent activity against multidrug-resistant isolates (MDR; MIC_{50/90}, MIC_{50/90}, 4/8 μ g/mL; 93.3% inhibited at ≤8/8 μ g/mL; Table 1)

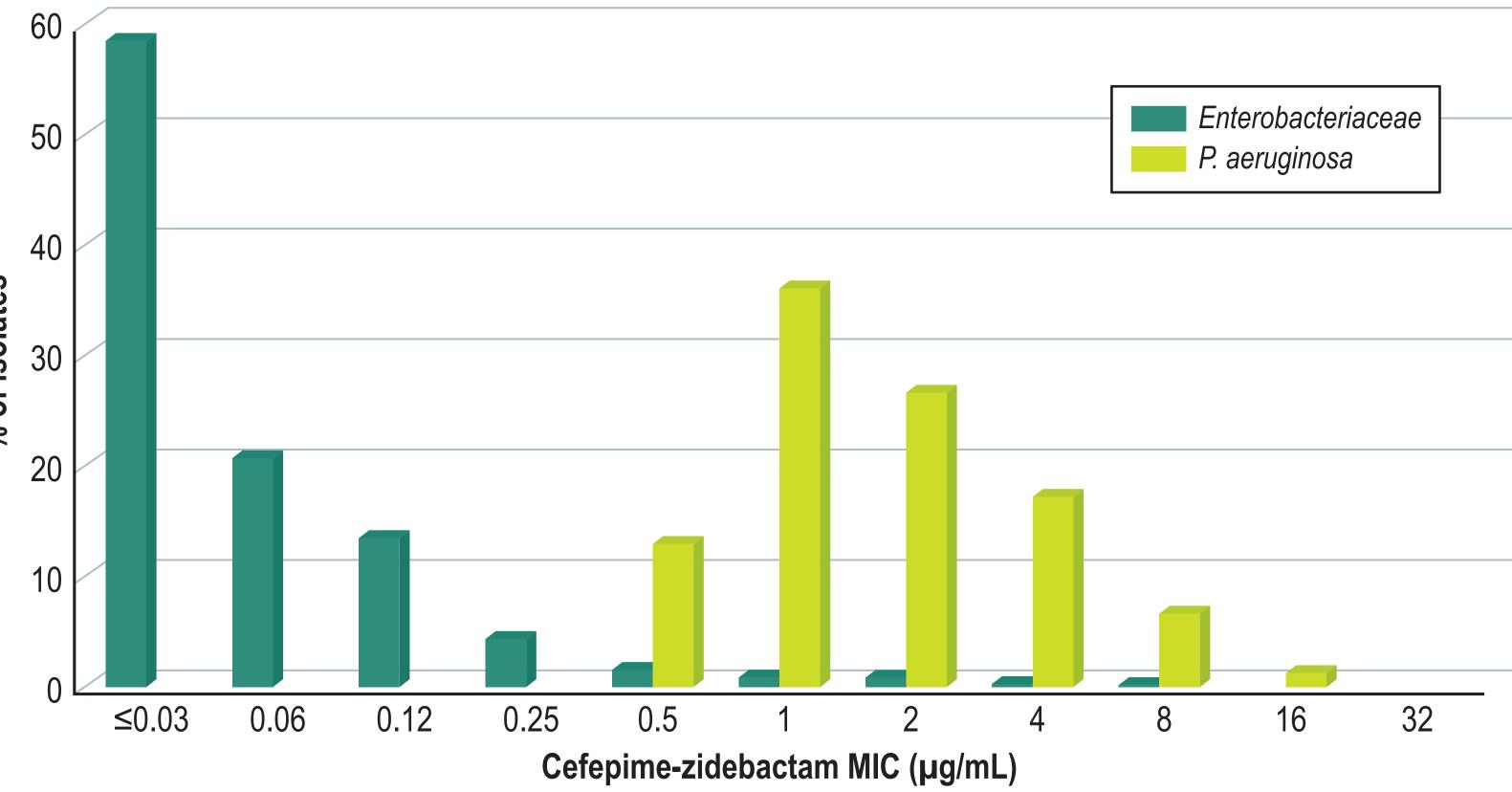
Table 1 Summary of cefepime-zidebactam 1:1 activity against isolates collected from patients hospitalized with bloodstream infections

Organiama	Ne		% inhibited		
Organisms	No.	Range	50%	90%	at ≤8/8 µg/mL⁴
Enterobacteriaceae	1,809	≤0.03 to 8	≤0.03	0.12	100.0%
CRE	44	0.06 to 8	1	4	100.0%
Escherichia coli	951	≤0.03 to 0.5	≤0.03	0.12	100.0%
ESBL-phenotype Escherichia coli	200	≤0.03 to 0.5	0.12	0.12	100.0%
Klebsiella pneumoniae	408	≤0.03 to 8	≤0.03	0.5	100.0%
ESBL-phenotype	127	≤0.03 to 8	0.25	2	100.0%
Meropenem-nonsusceptible (MIC, ≥2 µg/mL)	39	0.12 to 8	1	4	100.0%
Colistin-nonsusceptible (MIC, ≥4 µg/mL)	13	0.25 to 8	2	4	100.0%
Klebsiella oxytoca	63	≤0.03 to 0.25	≤0.03	0.12	100.0%
Proteus mirabilis	82	≤0.03 to 0.25	0.06	0.12	100.0%
Enterobacter spp.	162	≤0.03 to 2	0.06	0.25	100.0%
Ceftazidime-nonsusceptible (MIC, ≥8 µg/mL)	55	≤0.03 to 2	0.12	0.5	100.0%
Enterobacter cloacae	136	≤0.03 to 0.5	0.06	0.25	100.0%
Morganella morganii	24	≤0.03 to 0.25	≤0.03	0.12	100.0%
Citrobacter spp.	40	≤0.03 to 0.5	≤0.03	0.06	100.0%
Serratia marcescens	51	≤0.03 to 1	0.06	0.25	100.0%
Proteus vulgaris	3	0.06 to 0.12	0.12		100.0%
Providencia spp.	9	≤0.03 to 0.12	≤0.03		100.0%
Pseudomonas aeruginosa	170	0.5 to 16	2	4	98.8%
Ceftazidime-nonsusceptible (MIC, ≥16 µg/mL)	37	2 to 16	4	8	94.6%
Meropenem-nonsusceptible (MIC, ≥4 µg/mL)	52	0.5 to 16	4	8	96.2%
Piperacillin-nonsusceptible (MIC, ≥16 µg/mL)	35	2 to 16	4	8	94.3%
MDR	45	0.5 to 16	4	8	95.6%
XDR	30	2 to 16	4	8	93.3%
Acinetobacter spp.	115	0.5 to 64	16	32	49.6%

medical centers

Organiama / organiam grauna					Ν	lo. of isolates	at MIC (µg/mL	; cumulative ^o	%)				
Organisms / organism groups	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Enterobacteriaceae (1,809)													
Cefepime-zidebactam 1:1	1,052	373	242	79	29	14	14	4	2				
(1,809)	(58.2%)	(78.8%)	(92.2%)	(96.5%)	(98.1%)	(98.9%)	(99.7%)	(99.9%)	(100.0%)				
Cefepime (1,809)	812	370	148	63	30	34	34	42	34	49	41	54	98
	(44.9%)	(65.3%)	(73.5%)	(77.0%)	(78.7%)	(80.5%)	(82.4%)	(84.7%)	(86.6%)	(89.3%)	(91.6%)	(94.6%)	(100.0%)
Zidebactam (1,799)	2	409	760	159	57	20		11	10	11	16	31	302
	(0.1%)	(22.8%)	(65.1%)	(73.9%)	(77.1%)	(78.2%)	(78.8%)	(79.4%)	(80.0%)	(80.6%)	(81.5%)	(83.2%)	(100.0%)
CRE (44)	[1	
Cefepime-zidebactam 1:1 (44)			5	9	6	8	9	4	2				
		(2.3%)	(13.6%)	(34.1%)	(47.7%)	(65.9%)	(86.4%)	(95.5%)	(100.0%)				
Cefepime (44)		1	0	0		0		2		2	5	5	26
		(2.3%)	(2.3%)	(2.3%)	(4.5%)	(4.5%)	(6.8%)	(11.4%)	(13.6%)	(18.2%)	(29.5%)	(40.9%)	(100.0%)
Zidebactam (44)			4	6	3	4	6	2	0		2		15
			(9.1%)	(22.7%)	(29.5%)	(38.6%)	(52.3%)	(56.8%)	(56.8%)	(59.1%)	(63.6%)	(65.9%)	(100.0%)
Pseudomonas aeruginosa (170)			1		00	0.1	4 5	00		2	1	1	
Cefepime-zidebactam 1:1 (170)					22	61	45	29					
					(12.9%)	(48.8%)	(75.3%)	(92.4%)	(98.8%)	(100.0%)			
Cefepime (170)					2	33	49	25	28		6	4	8
					(1.2%)	(20.6%)	(49.4%)	(64.1%)	(80.6%)	(89.4%)	(92.9%)	(95.3%)	(100.0%)
Zidebactam (170)					2	15	58	65	23	3			2
					(1.2%)	(10.0%)	(44.1%)	(82.4%)	(95.9%)	(97.6%)	(98.2%)	(98.8%)	(100.0%)
Acinetobacter spp. (115)					0		4.4	40	40	04	05	0	
Cefepime-zidebactam 1:1 (115)					3	5	14	16	19	31	25		
					(2.6%)	(7.0%)	(19.1%)	(33.0%)	(49.6%)	(76.5%)	(98.3%)	(100.0%)	0.1
Cefepime (115)						5	16	8	9	11	6	24	34
					(1.7%)	(6.1%)	(20.0%)	(27.0%)	(34.8%)	(44.3%)	(49.6%)	(70.4%)	(100.0%)
Zidebactam (115)													115
													(100.0%)

 ≤ 0.03 to 0.12 µg/mL and MIC₉₀, 0.12 to 0.5 µg/mL) and retained potent activity against CRE (n=44; MIC_{50/90}, 1/4 μ g/mL), colistin-nonsusceptible *K. pneumoniae* (MIC_{50/90}, 2/4 μ g/mL),


 Cefepime-zidebactam exhibited consistent activity against P. aeruginosa from all regions (from 96.0% [US] to 100.0% [Latin America, APAC, and China] inhibited at ≤8/8 µg/mL) 4/8 μ g/mL; 95.6% inhibited at ≤8/8 μ g/mL) and extensively drug-resistant isolates (XDR;

 Cefepime-zidebactam (MIC_{50/90}, 16/32 μg/mL) was 4-fold more active than cefepime against Acinetobacter spp., and the most active compounds tested against *Acinetobacter* spp. were colistin (MIC_{50/90}, ≤0.5/1 μg/mL; 95.7%S) and amikacin (MIC_{50/90}, 32/>32 µg/mL; 47.8%S; Table 3)

Conclusions

- Cefepime-zidebactam (WCK 5222) was very active against this worldwide collection of gram-negative bacteria from hospitalized patients with bloodstream infection, including MDR isolates
- Importantly, cefepime-zidebactam showed potent activity against CRE, colistin-nonsusceptible K. pneumoniae, and meropenem-nonsusceptible P. aeruginosa
- Cefepime-zidebactam MIC_{an} value for Acinetobacter spp. (32 µg/mL) was 2-fold lower than the proposed PK/PD-based susceptible breakpoint of $\leq 64 \, \mu g/mL$

Figure 2 Cefepime-zidebactam MIC distributions for *Enterobacteriaceae* (n=1,809) and *P. aeruginosa* (n=170) from patients hospitalized worldwide with bloodstream infections

Table 2 Antimicrobial activity of cefepime-zidebactam 1:1, cefepime, and zidebactam tested against the organisms isolated from patients with bloodstream infections in US

Contact Information: Helio S. Sader, MD, PhD JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, IA 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: helio-sader@jmilabs.com

To obtain a PDF of this poster: Scan the QR code

Visit https://www.imilabs.com/data/posters

/IDWeek2017-cefepime-zidebactam.pdf Charges may apply.

No personal information is stored.

MIC ₅₀	MIC ₉₀
≤0.03	0.12
0.06	32
0.12	>64
1	4
>64	>64
2	>64
	-
2	4
4	32
4	8
16	32
64	>64
>64	>64

Organism (no. of isolates)/			CLSI ^a			
antimicrobial agent	MIC ₅₀	MIC ₉₀	%S	%R		
Enterobacteriaceae (1,809)						
Cefepime-zidebactam 1:1	≤0.03	0.12				
Cefepime	0.06	32	82.4	13.4 ^b		
Ceftazidime	0.25	32	81.1	17.4		
Ceftriaxone	≤0.06	>8	76.2	23.3		
Piperacillin-tazobactam	2	32	89.0	5.8		
Imipenem	≤0.12	0.5	94.5	2.8		
Meropenem	0.03	0.06	97.3	2.3		
Doripenem	≤0.06	0.12	97.4	2.2		
Levofloxacin	≤0.12	>4	77.2	20.7		
Gentamicin	≤1	>8	85.5	13.6		
Amikacin	2	4	97.7	1.6		
Colistin	0.12	>8				
Pseudomonas aeruginosa (170)						
Cefepime-zidebactam 1:1	2	4		_		
Cefepime	4	32	80.6	10.6		
Ceftazidime	2	32	78.2	14.7		
Piperacillin-tazobactam	4	64	79.4	5.9		
Imipenem	1	>8	68.2	28.2		
Meropenem	1	16	69.4	24.7		
Levofloxacin	0.5	>4	70.0	23.5		
Gentamicin	2	>8	82.9	14.7		
Amikacin	4	16	91.2	7.1		
Colistin	≤0.5	1	100.0	0.0		
Acinetobacter spp. (115)						
Cefepime-zidebactam 1:1	16	32				
Cefepime	64	>64	34.8	55.7		
Ceftazidime	>32	>32	33.0	62.6		
Ampicillin-sulbactam	32	>32	38.3	50.4		
Piperacillin-tazobactam	>64	>64	33.3	63.2		
Imipenem	>8	>8	46.1	53.9		
Meropenem	32	>32	42.6	56.5		
Levofloxacin	>4	>4	36.5	53.9		
Gentamicin	>8	>8	41.7	55.7		
Amikacin	32	>32	47.8	47.8		
Colistin	≤0.5	1	95.7	4.3		

Criteria as published by CLSI M100-S27 document [201]

Acknowledgments

This study was supported by Wockhardt Bio AG.

References

Clinical and Laboratory Standards Institute (2015). M07-A10. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, tenth edition. Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2017). M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. Wayne, PA: CLSI.

EUCAST (2017). Breakpoint tables for interpretation of MIC's and zone diameters. Version 7.1, March 2017. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST _files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf. Accessed March 2017.

Maxipime (2015). Maxipime Package Insert. Available at: http://www.accessdata.fda.gov /drugsatfda_docs/label/2015/050821s004lbl.pdf. Accessed September 2, 2016.

Nguyen HM, Shier KL, Graber CJ (2014). Determining a clinical framework for use of cefepime and beta-lactam/beta-lactamase inhibitors in the treatment of infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 69: 871-880.

Sader HS, Castanheira M, Huband M, et al. (2017). WCK 5222 (cefepime-zidebactam) antimicrobial activity tested against clinical isolates of Gram-negative bacteria collected worldwide (2015). Antimicrob Agents Chemother 61: 00072.

Sader HS, Rhomberg PR, Flamm RK, et al. (2017). WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant beta-lactamases. J Antimicrob Chemother 72: 1696-1703.